

UNIVERSITA' DEGLI STUDI DI SALERNO

AREA VI - Risorse Strumentali - Uffici Tecnici

Research Fund for Coal and Steel RFCS-02-2020 Grant Agreement 101034015

DREAMERS

Design REsearch, implementation And Monitoring of Emerging technologies for a new generation of Resilient Steel buildings

REALIZZAZIONE EDIFICIO C3 - Campus di Fisciano

PROGETTO ESECUTIVO

Architettonico Arch. Roberto Borriello Arch. Vincenzo Paolillo

Sistema di facciata e sistemazione esterne Arch. Federico Florena (tiarstudio s.r.l.)

Impianti Idrici - Scarico e Antincendio Ing. Alessandro Vitale Ing. Alfonso Pisano

Impianti Elettrici e Speciali Ing. Roberto Campagna Ing. Michele Petrocelli

Impianti Meccanici Ing. Fabrizio Fiorenza

Consulenza Impianti Meccanici Ing. Rocco Carfagna - Ing. Giuseppe Sorrentino Arch. Aniello De Martino

Impianti Gas Tecnici Ing. Valentino Vitale

Impianti Rete Dati Ing. Salvatore Ferrandino Dott. Vincenzo Agosti

Strutture Prof. Ing. Vincenzo Piluso Prof. Ing. Massimo Latour

Prof. Ing. Elide Nastri Prof. Ing. Gianvittorio Rizzano

Computi e Stime Arch. Aniello De Martino Geom. Michele Lalopa

P.I. Giovanni D'Aniello
Ing. Carmelo Montefusco

Pratiche VV.F., acustica ed ASL Ing. Carmelo Montefu

Coordinatore per la sicurezza in fase di progettazione e manutenzione opera Ing. Alfredo Landi

Collaudatore statico e tecnico-amministrativo Prof. Ing. Rosario Montuori

Responsabile del Procedimento: Ing. Nicola Galotto

R 21	DESCRIZIONE ELABORATO Relazione tecnica - Impianti idrici di carico, scarico, antincendio ed irrigazione	SCALA

REV. N	DATA	MOTIVO DELLA EMISSIONE	ELABORATO DA:

RIF. PRATICA:	VERIFICA PROGETTO (art. 26 D.Lgs. 50/2016)
	UNITA' DI VERIFICA:
	Ing. Pantaleone Aufiero
DATA: Febbraio 2023	Geom. Giovanni Soldà

AREA VI - Risorse Strumentali - Uffici Tecnici di Ateneo in possesso del sistema di Gestione per la qualità conforme alla UNI EN ISO 9001-2015 Certificato CSQ n. 0783.2020-6 scadenza 27/07/2023 per l'attività di verifiche sulla progettazione delle opere, ai fini della validazione, su progetti relativi alla propria stazione appaltante

INDICE

1.	PREME	SSA	2
2.	RETI II	ORICHE	3
	2.1 PRE	MESSE	3
	2.2 DOI	RSALI DI ALIMENTAZIONE PRINCIPALI	3
	2.2.1	Acque potabili	3
	2.2.2	Acque non potabili	3
	2.3 RET	TE DI DISTRIBUZIONE ACQUA	5
	2.4 DIM	TENSIONAMENTO DELLA RETE DI ACQUA FREDDA	8
3.	IMPIAN	NTI DI SCARICO INTERNO	12
	3.1 PRE	MESSA	12
	3.2 DIM	TENSIONAMENTO DELLE RETI DI SCARICO	14
	3.3 RET	E FOGNARIA INTERNA ACQUE BIANCHE	18
4.	RELAZ	IONE SUI CRITERI AMBIENTALI MINIMI	26
	4.1 PRE	MESSA	26
		TERI AMBIENTALI MINIMI PER LA NUOVA COSTRUZIONE,	
	RISTRUT	TURAZIONE E MANUTENZIONE DI EDIFICI SINGOLI O IN GRUPPI	
	4.2.1	SPECIFICHE TECNICHE PER GRUPPI DI EDIFICI	26
	4.2.2	SPECIFICHE TECNICHE DELL'EDIFICIO	29
	4.2.3	SPECIFICHE TECNICHE DEI COMPONENTI EDILIZI	30
5.		ONE TECNICA E DI CALCOLO DELL'IMPIANTO IDRICO	
A]		DIO	
		ERIMENTI NORMATIVI	
		CRIZIONE DELL'IMPIANTO	
		TESI DI PROGETTO	
		ERIORI COMPONENTI DEGLI IMPIANTI	
		COLO DELL'IMPIANTO	
6.	ELENC	O ELABORATI	43

1. PREMESSA

La presente relazione ha per oggetto la progettazione degli impianti idrici e fognari relativi al progetto esecutivo del "FABBRICATO C3" da realizzarsi *nel Campus di Fisciano dell'Università degli Studi di Salerno*, e in dettaglio analizza il dimensionamento e la verifica della rete idrico-sanitaria, della rete fognaria interna.

L'area d'intervento è costituita attualmente da un'area a verde sita tra gli edifici: Mensa a Nord, Residenze I lotto a Est e Parcheggio mensa a Ovest del Campus che vede i punti di connessioni con tutte le reti idriche esistenti (potabile e non potabile) più prossimo, nel cunicolo che va verso il Terminal Bus dove già sono presenti tutte le predisposizioni per derivare le linee di progetto.

2. RETI IDRICHE

2.1 PREMESSE

In fase di progetto si è scelto di alimentare i lavabi dei servizi igienici ed i bidet (quando presenti) con acqua potabile e di alimentare i vasi igienici con acqua non potabile derivata dal circuito "pozzi" del Campus. Inoltre, si è stabilito di dotare di acqua calda solo i servizi igienici destinati ai diversamente abili.

Il corretto dimensionamento delle tubazioni e degli altri componenti dell'impianto deve assicurare che nelle circostanze più sfavorevoli di funzionamento (periodi di massimo consumo) si abbiano normali condizioni di alimentazione anche nei punti di erogazione situati in posizioni svantaggiate.

2.2 DORSALI DI ALIMENTAZIONE PRINCIPALI

2.2.1 Acque potabili

Come premesso la condotta di alimentazione delle acque potabili sarà derivata dal cunicolo che va verso il Terminal Bus dove furono già predisposti i necessari stacchi.

La derivazione dalla condotta principale, percorrendo in parallelo la "Via della Tecnica" giungerà al primo livello (piano terra) del nuovo edificio, in particolare si diramerà in una linea che servirà in caso di emergenza l'impianto di irrigazione ed in una linea che giungerà fin sotto il cavedio dei bagni dove si staccherà la relativa colonna montante verticale che andrà a servire i due gruppi bagni siti ai rispettivi piani (P1, P2). Lungo il tragitto sarà lasciato un attacco di servizio per il locale della predetta centrale termica ed un innesto, corredato da apposito disconnettore idraulico, per l'eventuale alimentazione della montante acque non potabili nel caso di fuori servizio di quest'ultime.

La condotta interrata sarà tutta in PE 100 (polietilene ad Alta Densità) a profondità comprese tra 1÷1,5 m che attraverserà il fabbricato e giungerà al muretto di confine lato A.DI.S.U. per fungere poi da collegamento al fabbricato C4 in previsione.

La montante verticale delle acque potabili sarà in acciaio e servirà ai vari livelli le linee di alimentazione dei lavandini [pezzi: $8 = (2+2) \times 2$], ed in ognuno dei due bagni per diversamente abili: la doccetta we ed il lavandino.

Ovviamente anche il boiler dell'acqua calda presente nel locale dei bagni per diversamente abili saranno alimentati dalla linee delle acque potabili.

2.2.2 Acque non potabili

L'intervento in esame prevede di utilizzare le acque di pozzo oltre che per l'irrigazione dei giardini e delle aiuole anche per alimentare gli scarichi dei wc. Inoltre è stato previsto di dotare dei punti presa di servizio la centrale termica e l'impianto di irrigazione.

L'alimentazione dei predetti punti sarà derivata dalla nuova condotta proveniente dal cunicolo che sale verso il Terminal Bus e sarà completamente in PE100.

Il tratto sarà interrato e lungo il suo percorso sarà derivata l'alimentazione della centralina dell'impianto d'irrigazione. Successivamente si diramerà l'alimentazione per le montanti dei gruppi bagni e per la centrale termica, ed infine proseguirà fino al muretto di confine lato A.DI.S.U. per fungere poi da collegamento al fabbricato C4 in previsione.

La montante verticale delle acque non potabili sarà in PE 100 e servirà ai vari livelli le linee di alimentazione dei wc [pezzi: 12 = (3+3) x 2], ed in ognuno dei due bagni per diversamente abili: wc e proseguirà alla copertura dove sarà predisposto un punto con rubinetto di servizio.

2.3 RETE DI DISTRIBUZIONE ACQUA

In fase di progetto della rete si è ritenuto di scegliere per tutti i servizi una distribuzione "in linea". La scelta dei materiali delle tubazioni ha tenuto conto i diversi aspetti tecnici ed economici che consentono di mettere a confronto i diversi materiali presenti sul mercato. Tutti gli impianti di distribuzione interna (acqua fredda potabile, acqua fredda non potabile) saranno realizzati con tubazioni in multistrato.

Tubazioni in multistrato in polietilene reticolato (PE-Xb-Alluminio-PE-Xb)

Tubazioni in multistrato in polietilene reticolato (PE-Xb-Alluminio-PE-Xb) – Coibentato per acqua calda

Giuntati mediante raccordi a pressare in ottone – Con boccola in acciaio inox

A parete, prima dell'allaccio dei carichi acqua fredda e calda dei lavandini/lavelli, sono state previste delle chiavi di arresto con filtro interno.

A parete, prima dell'allaccio delle cassette di scarico dei WC, sono state previste delle chiavi di arresto cromate.

Chiave di arresto con filtro

Chiave di arresto per cassetta di scarico WC

I lavandini ed i lavelli saranno dotati di rubinetto con leva clinica in acciaio cromato. I lavandini saranno del tipo sospesi in porcellana bianca con sifone del tipo a bottiglia e griglia fissa nella piletta di scarico.

Rubinetto miscelatore con leva clinica

Lavandino in porcellana bianca extra clay sospeso

I WC saranno in porcellana bianca del tipo sospeso completi di tavoletta in resina e dotati di cassetta di scarico a vista anch'essa in porcellana bianca.

Vaso porcellana bianca extra clay con tavoletta resina Cassetta scarico a vista porcellana bianca extra clay

Staffa per fissaggio vaso sospeso

Tipo di allaccio cassetta di scarico wc

Il sistema di scarico del WC sarà del tipo Catis mentre il sistema di riempimento della cassetta sarà del tipo a galleggiante:

Sistema a galleggiante per il riempimento della cassetta

Sistema di scarico cassetta tipo Catis

La posizione delle chiavi e delle tubazioni indicata nei grafici è puramente indicativa. L'impresa dovrà concordare con il Direttore dei Lavori la distribuzione definitiva integrata con quella degli altri impianti presenti nei locali.

2.4 DIMENSIONAMENTO DELLA RETE DI ACQUA FREDDA

Il corretto dimensionamento delle tubazioni e degli altri componenti dell'impianto deve assicurare che nelle circostanze più sfavorevoli di funzionamento (periodi di massimo consumo) si abbiano normali condizioni di alimentazione anche nei punti di erogazione situati in posizioni svantaggiate.

A tal fine ci si riporta alla norma UNI 9182 – "Impianti di alimentazione e distribuzione d'acqua fredda e calda.

Criteri di progettazione, collaudo e gestione" – che permette di tenere conto delle portate massime contemporanee della rete attraverso il metodo delle "unità di carico" (UC).

Una volta individuati gli apparecchi utilizzatori da servire in funzione della tipologia di edificio in cui si sta progettando l'impianto e definito lo schema generale dell'impianto stesso, per ogni punto di erogazione va stabilito il valore delle UC sia per l'acqua fredda sia per l'acqua calda, secondo quanto indicato in Tabella 1.

La tipologia di impianto scelta per tutti i servizi e quella di distribuzione "in linea". Come detto UC è il valore, assunto convenzionalmente, che tiene conto della portata di un punto di erogazione, delle sue caratteristiche dimensionali e funzionali e della sua frequenza d'uso. Naturalmente ad un raggruppamento di apparecchi sanitari corrisponde un valore di UC minore della somma dei valori relativi ai singoli apparecchi del gruppo, per tenere conto

della probabile contemporaneità d'uso (non tutti gli apparecchi sono utilizzati contemporaneamente).

	9	Uni	tà di ca	rico
Apparecchi singoli	Alimentazione		Acqua calda	
Lavabo	Gruppo miscelatore	1,50	1,50	2,00
Bidet	Gruppo miscelatore	1,50	1,50	2,00
Vasca	Gruppo miscelatore	3,00	3,00	4,00
Doccia	Gruppo miscelatore	3,00	3,00	4,00
Vaso	Cassetta	5,00	-	5,00
Vaso	Passo rapido o flussometro	10,00	-	10,00
Orinatoio	Rubinetto a vela	0,75	-	0,75
Orinatoio	Passo rapido o flussometro	10,00	-	10,00
Lavello	Gruppo miscelatore	2,00	2,00	3,00
Lavatoio cucina	Gruppo miscelatore	3,00	3,00	4,00
Pilozzo	Gruppo miscelatore	2,00	2,00	3,00
Vuotatoio	Cassetta	5,00	-	5,00
Vuotatoio	Passo rapido o flussometro	10,00	-	10,00
Lavabo a canale (per ogni posto)	Gruppo miscelatore	1,50	1,50	2,00
Lavapiedi	Gruppo miscelatore	1,50	1,50	2,00
Lavapadelle	Gruppo miscelatore	2,00	2,00	3,00
Lavabo clinico	Gruppo miscelatore	1,50	1,50	2,00
Beverino	Rubinetto a molla	0,75	-	0,75
Doccia di emergenza	Comando a pressione	3,00	-	3,00
Idrantino Ø 3/8"	Solo acqua fredda	2,00	-	2,00
Idrantino Ø 1/2"	Solo acqua fredda	4,00	-	4,00
Idrantino Ø 3/4"	Solo acqua fredda	6,00	-	6,00
Idrantino Ø 1"	Solo acqua fredda	10,00	-	10,00

Tabella 1-Unità di carico (UC) per le utenze degli edifici a uso pubblico e collettivo.

Tale dato va considerato per il dimensionamento del tratto di tubazione che va dalla confluenza delle diramazioni dei singoli apparecchi al punto immediatamente a monte della particolare diramazione che fornisce acqua al gruppo di apparecchi.

Analizzando la rete di distribuzione con numerose utenze si sommano le UC di tutti gli apparecchi serviti dal particolare tratto di rete che si considera. Dai valori totalizzati di UC si passa, mediante la Tabella 2 alla determinazione delle portate d'acqua (massime contemporanee) che a essi corrispondono. Infine si determinano i diametri delle tubazioni, tenendo presente che il diametro interno della tubazione, la portata e la velocità dell'acqua sono legate dalle seguente relazione:

$$v = \frac{q}{\pi d^2 / 4}$$

UC Unità di carico	Portata I/s	Unità di carico UC	Portata Vs	Unità di carico UC	Portata
	ηş 			00	
6	0,30	120	3,65	1 250	15,50
8	0,40	140	3,90	1 500	17,50
10	0,50	160	4,25	1 750	18,80
12	0,60	180	4,60	2 000	20,50
14	86,0	200	4,95	2 250	22,00
16	0,78	225	5,35	2 500	23,50
18	0,85	250	5,75	2 750	24,50
20	0,93	275	6,10	3 000 E	26,00
25	1,13	300	6,45	3 500	28,00
30	1,30	400	7,80	4 000	30,50
35	1,45	500	9,00	4 500	32,50
40	1,62	600	1 0,0 0	5 000	34,50
50	1,90	700	11,00	6 000	38, 0 0
60	2,20	800	11,90	7 000	41,00
70	2,40	900	12,90	8 000	44,00
80 "	2,65	1 000	13,80	9 000	47,00
90	2,90			10 000	50,00

Tabella 2-Portata massima contemporanea per abitazioni private e edifici collettivi.

Nel seguito si riportano i risultati ottenuti con riferimento all'edificio di progetto per le reti di acqua potabile e non potabile:

	IM	PLA	ANTO A	CQUA I	POTA	BILE	-	
PIA	NO TIPO							
		In	ipianto id	rico acqua	potabil	e		
Locale	Apparecchio	n.	portata [l/s]	UC	DN	Materiale	Dint [mm]	V[m/s]
Bagno di	lavabi	5		7,5		MS		
piano	doccetta	1		3		MS		
totale add	duzione bagni	-		10,5				
totale adduz	zione: Bagni di pid (montante)	ano	0,97	21	1"	acciaio	28,5	1,52

	IMPIA	ΝT	O ACQ	QUA NOI	N PO	TABILE		•
PIANO	TIPO							
	Impia	anto	idrico aco	qua non pot	abile p	otabile		
Locale	Apparecchio	n.	portata [l/s]	UC	DN	Materiale	Dint [mm]	V[m/s]
Dania di miana	vasi	7		35		MS		
Bagno di piano	orinatoi	0		0		MS		
totale adduzio	ne per piano	-		35		PE100 PN 25		
	: Bagni di piano *2 ntante)	2	2,4	70	32	PE100 PN 25	23,2	5,68

I risultati ottenuti hanno portato alla progettazione dell'impianto riportata nei grafici di progetto.

Tavole grafiche:

- IS 01 Planimetria impianti fognari
- IS 02 Planimetria impianti idrici di adduzione
- IS 03 Planimetria impianto di irrigazione
- Nelle tavole IS 01, IS 02, IS 03, IS 04 sono riportate le posizioni delle colonne montanti di adduzione delle acque potabili e non potabili nonché i tratti di condotta interrati.

Si dovranno garantire le seguenti prescrizioni di carattere generale:

- Gli stacchi dalle montanti dovranno essere posizionate in alto, oltre alla quota del controsoffitto dei bagni.
- Il percorso della condotta in linea di distribuzione delle acque non potabili (scarichi WC ed orinatoi) sarà in alto nella controsoffittatura (subito al di sopra la posizione delle cassette di scarico dei WC). Il percorso della condotta in linea di distribuzione delle acque potabili (lavandini) sarà a di sopra degli stacchi di alimentazione dei lavandini stessi. Le cassette di scarico sono posizionate a vista in alto. L'impianto di adduzione è del tipo "In linea a più diramazioni". Le tubazioni saranno del tipo in multistrato "polietilene reticolato alluminio polietilene reticolato". Nel caso della linea dell'acqua calda, prevista solo per il lavandino e la doccetta del bagno disabili, si dovrà utilizzato il tipo preisolato con guaina autoestinguente di colore rossa. Per l'accoppiamento e le giunzioni occorre utilizzare raccordi a pressare in ottone e boccola in acciaio inox fissata mediante anello in materiale polimerico trasparente.
- L'attraversamento dei vari corpi bagni, necessario per servire anche bagno disabili, avverrà nel controsoffitto.
- Il passo delle staffe di fissaggio/sostegno delle tubazioni in acciaio deve essere < 3 m
- Il passo delle staffe di fissaggio/sostegno delle tubazioni non in acciaio deve essere < 20 Ø (dove Ø è il diametro esterno della tubazione da sorreggere). A loro volta i supporti andranno ancorati alle pareti di cls tramite tasselli ad espansione di opportune dimensioni

3. IMPIANTI DI SCARICO INTERNO

3.1 PREMESSA

Gli impianti di scarico progettati tengono conto del fatto che il Campus di Fisciano possiede una rete separata di scarico per le acque nere e per le acque meteoriche i cui collettori principali transitano, in posizione interrata, a poca distanza dall'area d'intervento. In particolare, nei pressi del fabbricato in progettazione transita:

- Un collettore acque nere lungo la scarpata che fiancheggia Via della Tecnica a servizio delle Residenze universitarie primo lotto di forma circolare con diametro da 400 mm:
- Un collettore acque bianche lungo Via della Tecnica di forma circolare con diametro da 500 mm

Quindi l'impianto di scarico progettato è stato pensato per convogliare separatamente le portate nere (fecali e scarichi arredi da laboratorio) e le portate di origine meteorica. Nella presente progettazione sono state distinte le seguenti reti:

Rete scarico acque nere all'interno dell'edificio – FECALI: È la rete di smaltimento degli apparecchi sanitari presenti nell'edificio termina in corrispondenza dei pozzetti di innesto alla rete fognaria esterna. I tratti di raccordo tra gli apparecchi e la fecale, la fecale stessa per il suo intero sviluppo verticale e il tratto che va dal piede della fecale al primo pozzetto esterno all'edificio, saranno realizzati con tubazioni in polipropilene (PP) con innesto a bicchiere munite di guarnizioni in SBR a doppia tenuta.

Tubazioni in polipropilene per scarichi civili in pressione con innesto a bicchiere e guarnizioni

Il progetto ha previsto la realizzazione di una fecale: che convoglia gli scarichi di tutti gli apparecchi presenti nei bagni ai vari piani. In linea alla fecale (configurazione di

sistema con ventilazione primaria ai sensi della norma UNI 12056-2) è stata prevista la tubazione di ventilazione che attraversano l'edifico per poi confluire in copertura.

L'ancoraggio di tutte le tubazioni alle strutture verticali e orizzontali avverrà con l'uso di grappe, collari e tiranti opportunamente posizionati.

Si dovranno garantire le seguenti prescrizioni di carattere generale:

- Tutti i cambi di direzione devono essere eseguite con curve aperte (<45°)
- I tratti orizzontali devono avere una pendenza comunque >2%
- Tutte le giunzioni devono essere a tenuta
- Tutti i cambi di sezione devono avvenire subito prima dell'immissione successiva
- Il passo delle staffe di fissaggio/sostegno delle tubazioni non in acciaio deve essere:
 - <15 Ø nei tratti in cui il percorso delle tubazioni delle pluviali/fecali e verticale (pendenza >200%);
 - <7 Ø nei tratti in cui il percorso delle tubazioni delle pluviali/fecali e orizzontale (pendenza <200%);

(dove \emptyset è il diametro esterno della tubazione da sorreggere). A loro volta i supporti andranno ancorati alle pareti di cls tramite tasselli ad espansione di opportune dimensioni e barre filettate.

- In corrispondenze delle curve di passaggio verticale/orizzontale si dovranno prevedere delle selle di appoggio della tubazione.
- rete scarico acque bianche all'interno dell'edificio PLUVIALI: È la rete di smaltimento delle acque piovane incidenti sull'edificio. L'impianto ipotizzato prevede che le acque della copertura del vano scala vengano convogliate attraverso due pluviali in PP (Ø160) che avranno andamento verticale eccetto per un cambio di direzione orizzontale in corrispondenza dell'intradosso del primo solaio. Dette pluviali transiteranno all'interno dell'edificio in parte all'interno dei locali tecnici. Le tubazioni dell'impianto acque bianche comprese tra i punti di presa sul terrazzo di copertura ed il primo pozzetto esterno al fabbricato saranno realizzate con tubazioni in HDPE (Polietilene ad alta densità), le cui giunzioni avverranno mediante saldatura per elettrofusione con manicotto elettrico. Il sistema così realizzato dovrà garantire la tenuta ad una pressione minima pari a +5 Bar. L'ancoraggio delle tubazioni alle strutture verticali ed orizzontali avverrà con l'uso di grappe, collari e tiranti opportunamente posizionati.

Si dovranno garantire le seguenti prescrizioni di carattere generale:

- Tutti i cambi di direzione devono essere eseguite con curve aperte (<45°)
- I tratti orizzontali devono avere una pendenza comunque >2%
- Tutte le giunzioni devono essere a tenuta

- Tutti i cambi di sezione devono avvenire subito prima dell'immissione successiva
- Il passo delle staffe di fissaggio/sostegno delle tubazioni non in acciaio deve essere:
 - <15 Ø nei tratti in cui il percorso delle tubazioni delle pluviali/fecali e verticale (pendenza >200%);
 - $<7 \varnothing$ nei tratti in cui il percorso delle tubazioni delle pluviali/fecali e orizzontale (pendenza <200%);

(dove \emptyset è il diametro esterno della tubazione da sorreggere). A loro volta i supporti andranno ancorati alle pareti di cls tramite tasselli ad espansione di opportune dimensioni e barre filettate.

- In corrispondenze delle curve di passaggio verticale/orizzontale si dovranno prevedere delle selle di appoggio della tubazione.
- rete scarico acque bianche e nere all'esterno dell'edificio. È la rete che raccoglie le acque pluviali delle aree impermeabili esterne all'edificio ed in cui si innestato le pluviali dell'edificio stesso, giungendo fino al rispettivo collettore di scarico. Tutte le tubazioni di scarico sono state previste in PVC.

Esempio di tubazioni in PVC

La rete di smaltimento esterna è stata progettata garantendo una pendenza pari o superiore al 2% per tutti i tratti.

3.2 DIMENSIONAMENTO DELLE RETI DI SCARICO

Il sistema di scarico interno risulta costituito dall'insieme di tubazioni ed accessori che collegano i dispositivi di scarico dei vari apparecchi sanitari alla rete fognaria. Fanno parte di esso anche le colonne di ventilazione, necessarie per consentire lo sfiato all'esterno degli odori che si sviluppano dai liquami e per favorire il regolare funzionamento dei vari sifoni installati sugli apparecchi.

Il dimensionamento corretto delle tubazione deve far sì che le stesse siano tali da permettere lo scarico senza che l'acqua occupi per intero la sezione di passaggio del tubo, consentendo così la libera circolazione dell'aria di ventilazione; al contempo il diametro non deve essere tanto ampio da favorire la formazione di depositi ed incrostazioni per insufficiente lavaggio della parte interna del condotto. Per la relativa progettazione si fa riferimento alla norma UNI EN 12056-2 (Sistemi di scarico funzionanti a gravità all'interno

degli edifici - Impianti per acque reflue, progettazione e calcolo) ed al concetto di unità di scarico (US), definita come la portata media di scarico di un apparecchio sanitario, espressa in litri al secondo (l/s).

Per l'edificio in esame è stata prevista una ventilazione primaria ed un sistema di scarico tipo II ai sensi della citata norma UNI, ovvero un sistema di scarico con colonna di scarico unica e diramazioni di scarico di piccolo diametro. Gli apparecchi sanitari sono connessi a diramazioni di scarico di piccolo diametro. Tali diramazioni sono dimensionate per un grado di riempimento uguale a 0,7 (70%) e sono connesse a un'unica colonna di scarico.

In funzione del sistema adottato è possibile quindi determinare le US corrispondenti agli apparecchi previsti, secondo quanto riportato nella seguente tabella.

Sistema I	Sistema II	Sistema III	Sistema IV
<i>DU</i> Vs	<i>DU</i> l/s	<i>DU</i> Vs	<i>DU</i> Ns
0,5	0,3	0,3	0,3
0,6	0,4	0,4	0,4
0,8	0,5	1,3	0,5
0,8	0,5	0,4	0,5
0,5	0,3	-	0,3
0,2*	0,2*	0,2*	0,2*
0,8	0,6	1,3	0,5
0,8	0,6	1,3	0,5
0,8	0,6	0,2	0,5
0,8	0,6	0,6	0,5
1,5	1,2	1,2	1,0
	1,8		
2,0	1,8	da 1,2 a 1,7***	2,0
2,0	1,8	da 1,4 a 1,8***	2,0
2,5	2,0	da 1,6 a 2,0***	2,5
0,8	0,9	-	0,6
1,5	0,9	-	1,0
2,0	1,2	-	1,3
	0,0	DV DV V/s 1/s 0,5 0,3 0,6 0,4 0,8 0,5 0,8 0,5 0,5 0,3 0,2* 0,2* 0,8 0,6 0,8 0,6 0,8 0,6 1,5 1,2 *** 1,8 2,0 1,8 2,5 2,0 0,8 0,9 1,5 0,9 1,5 0,9	DV DV DV l/s 0,5 0,3 0,3 0,6 0,4 0,4 0,4 0,8 0,5 1,3 0,8 0,5 0,4 0,5 0,3 - 0,2* 0,2* 0,2* 0,8 0,6 1,3 0,8 0,6 0,2 0,8 0,6 0,6 1,5 1,2 1,2 *** 1,8 da 1,2 a 1,7**** 2,0 1,8 da 1,4 a 1,8**** 2,5 2,0 da 1,6 a 2,0**** 0,8 0,9 - 1,5 0,9 -

Per persona.

Tabella 4 – Unità di scarico per differenti apparecchi sanitari.

La portata di acque reflue (Q) prevista per un impianto di scarico, in parte e nell'intero sistema, al quale sono raccordati unicamente apparecchi sanitari domestici si ricava dalla seguente espressione:

Non ammesso.

^{***} A seconda del tipo di cassetta (valido unicamente per WC a cacciata con cassetta e sifone).

Non utilizzata o dati mancanti.

$$Q = k\sqrt{\sum US}$$

dove:

- Q è la portata acque reflue (1/s);
- K è il coefficiente di frequenza;
- ΣUS è la somma delle unità di scarico.

In Tabella 5 sono riportati i coefficienti di frequenza tipo relativi al differente utilizzo degli apparecchi. Nel caso in oggetto si è ritenuto di utilizzare un K = 1,0 per tutti i servizi.

Utilizzo degli apparecchi	Coefficiente K
Uso intermittente, per esempio in abitazioni, locande, uffici	0,5
Uso frequente, per esempio in ospedali, scuole, ristoranti, alberghi	0,7
Uso molto frequente, per esempio in bagni e/o docce pubbliche	1,0
Uso speciale, per esempio laboratori	1,2

Tabella 5 – Valori del coefficiente di frequenza.

La capacità massima ammessa per le tubazioni (Qmax) deve corrispondere, come minimo, al valore maggiore tra:

- portata acque reflue calcolata (Q);
- portata dell'apparecchio con l'unità di scarico più grande.

L'assegnazione del relativo diametro per le diramazione di scarico si effettua mediante l'utilizzo della Tabella 6, in funzione del sistema di scarico adottato.

Q _{max}	Sistema I	Sistema II	Sistema III	Sistema IV
l/s	DN	DN	DN	DN
	Diramazione/ Ventilazione	Diramazione/ Ventilazione	Diramazione/ Ventilazione	Diramazione/ Ventilazione
0,60		30/30		30/30
0,75	50/40	40/30		40/30
1,50	60/40	50/30		50/30
2,25	70/50	60/30	Vedere prospetto 6	60/30
3,00	80/50**	70/40**		70/40**
3,40	90/60***	80/40****		80/40****
3,75	100/60	90/50		90/50
 Non ammesso. 		•		

[&]quot; Senza WC.

Tabella 6 – Portata massima (Qmax) e diametro nominale (DN) per diramazioni –UNI EN 12056-2.

In riferimento poi alle colonne di scarico, nella successiva tabella si riportano le dimensioni e i limiti di applicazione per le colonne di scarico. Nel caso in oggetto è stata considerata l'installazione di braghe ad angolo.

sfiato	Q_{\max} (l/s)				
DN	Braga a squadra	Braga ad angolo			
60	0,5	0,7			
70	1,5	2,0			
80*	2,0	2,6			
90	2,7	3,5			
100**	4,0	5,2			
125	5,8	7,6			
150	9,5	12,4			
200	16,0	21,0			

Tabella 7 – Portata massima (Qmax) e diametro nominale (DN) per colonne –UNI EN 12056-2.

I risultati ottenuti utilizzando la procedura di calcolo sopra descritta sono riportati nei corrispondenti elaborati grafici allegati. Da tali grafici si rileva che è stata prevista una fecale da 160 mm per il blocco dei servizi. Per la fecali è stata previsto apposita colonna di ventilazione. Nella tavola IS 04 - Piante e gruppo bagni - adduzione e scarico è riportata

^{***} Massimo due WC e cambiamenti di direzione per un totale massimo di 90°.

^{***} Massimo un WC.

dettagliatamente la forma, dimensione e posizione di tutti i componenti del sistema di scarico delle fecali.

3.3 RETE FOGNARIA INTERNA ACQUE BIANCHE

Il sistema di scarico interno risulta costituito dall'insieme di tubazioni ed accessori che collegano le bocche delle pluviali poste sulla copertura dell'edificio fino all'innesto nella rete esterna.

Per la relativa progettazione si fa riferimento alla norma UNI EN 12056-3 (Sistemi di scarico funzionanti a gravità all'interno degli edifici - Sistemi per l'evacuazione delle acque meteoriche, progettazione e calcolo).

Poiché la pioggia è un fenomeno che presenta caratteristiche di notevole variabilità, si fa riferimento ai valori dell'intensità di pioggia caratteristici della zona in cui deve sorgere l'opera, attraverso i quali è possibile ricavare i corrispondenti valori di portata massima di pioggia da smaltire.

Per la determinazione delle caratteristiche pluviometriche si è fatto riferimento ai dati della Sezione di Napoli del Servizio Idrografico Italiano ed ai dati della pubblicazione "Valutazione delle piene in Campania" (F. Rossi, P. Villani) relativi alla stazione di Baronissi degli anni 1963-1998.

L'analisi delle serie storiche relative a ciascun campione di durata *t* è stato eseguito per via statistica. In particolare si è ipotizzato che la funzione di distribuzione più adatta a rappresentare ciascun campione di dati fosse la legge asintotica del massimo valore (Legge di Gumbel).

In tal modo è possibile definire una curva di probabilità che interpreti i valori delle altezze di pioggia per una certa durata t per un periodo di ritorno T. Tale curva di probabilità è spesso indicata anche come legge di pioggia.

La legge di pioggia, in funzione delle ipotesi fatte, ha la seguente formulazione:

$$h_{t,T}=\xi(t)*K(T)$$

dove ξ è detto parametro centrale ed è legato alla durata di pioggia t, mentre K è un coefficiente moltiplicativo legato al periodo di ritorno T.

Il parametro centrale ξ dipende dalla seguente legge:

Come parametro centrale si può assumere o la moda o la media delle altezze di pioggia cadute in una certa durata t.

Si sono scelti i valori della media in modo che la formula sia:

$$\mu = at^n$$

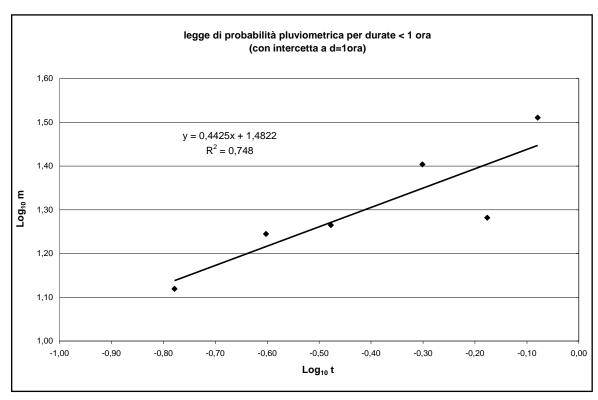
Esprimendo la legge di pioggia in un riferimento logaritmico otteniamo una retta dal cui coefficiente angolare e dall'intercetta con l'asse delle ordinate è possibile ricavare i valori dei coefficienti a ed n di tale legge, infatti:

$$\mu = at^n \Rightarrow \log \mu = \log(at^n) \Rightarrow \log \mu = \log a + n \log t \Rightarrow Y = A + BX$$

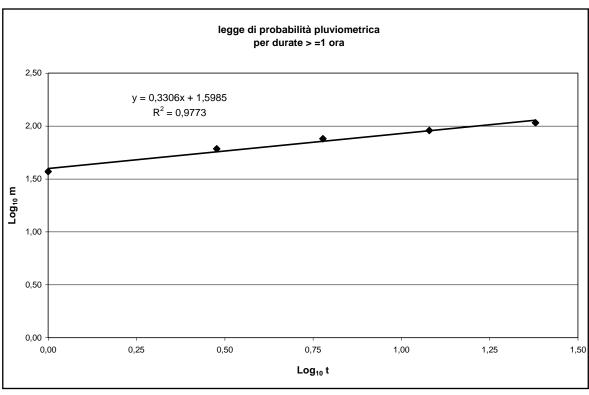
Quindi una volta noti A e B sono noti a ed n.

La legge di pioggia è inoltre una spezzata in quanto sono state fatte delle considerazioni differenti a seconda che la durata dell'evento di pioggia è inferiore o superiore ed uguale all'ora.

Qui di seguito si determinerà l'elaborazione delle curve di possibilità pluviometrica della stazione di Baronissi.


Nella tabella seguente si riportano per gli anni dal 1965 al 1998 per la stazione di Baronissi le precipitazioni di massima intensità relative agli intervalli di: 10 - 15 - 20 - 30 - 40 - 50 minuti e 1 - 3 - 6 - 12 e 24 ore.

1964 6,80 9,60 9,00 10,00 12,00 23,80 26,60 40,00 58,60 77,00 1965						E	Baronissi						
1963 9,60 9,00 10,00 12,00 23,80 26,60 40,00 58,80 77,00 1965 13,00 27,40 16,60 35,00 60,00 106,80 117,00 164,00 1966 7,00 144,00 20,00 55,00 73,20 198,80 224,40 223,00 30,00 30,00 1967 24,40 263,00 30,00 46,00 40,00 73,00 105,40 120,80 132,80 13972 17,00 15,20													
1964		10'	15'	20'	30'	40'	50'	1					
1965 13,00 27,40 16,60 35,00 106,60 117,00 164,00 30,00 196,70 144,00 300,00 196,70 144,00 300,00 196,70 304,00 300,00 196,70 300,00								- ,	,	- /	,	103,40	
1966 7,00		6,80		9,60								77,00	
1967					13,00							164,00	
1968		7,00		14,00		20,00	55,00						
1969 15,00 16,00 30,00 40,00 46,00 40,00 73,00 102,40 102,40 102,40 1971 20,00 15,00 15,00 15,00 120,80 139,6 1971 20,00 20,00 21,000 21													
1970													
1971			40.00	30,00			40.00						
1972		15,00			30,00		46,00	40,00	73,00	105,40	120,80	139,60	
1973												ļ	
1974			17,00		15.20								
1975		<u> </u>							64.00	67.00	67.00	91.60	
1976		15.60			21,00			22.00	04,00	07,00	07,00	61,00	
1977 9,00								32,00	74.20	74.20	74.20	92.00	
1978 9,00								62.00					
1979									37,00	43,00	00,00	73,40	
1980		3,00		20.00				20,00				 	
1981 20,00				20,00					38.40	46.00	73.00	115.00	
1982		20.00						38.00		-,	-,		
1983													
1984		12,00						02,00	02,00	02,00	11,00	100,00	
1985		15.00						27.40	38.00	38.00	44.00	63,00	
1986											118.20	144,00	
1987 40,00 70,00 157,00 163,60 164,60 164,80 1988 43,00 67,80 67,	1986								32,60	32,80		69,20	
1988					40,00							164,80	
1990	1988												
1991 1992 18,20 22,00 32,20 32,20 37,40 43,80 87,60 87,60 96,60 1994 13,80 18,00 24,00 26,40 39,40 66,40 102,40 106,0 1995 7,20 14,60 20,00 24,80 44,00 56,80 57,20 80,60 1996 15,00 17,00 32,00 43,00 63,00 95,60 96,00 96,00 1997 16,00 16,00 16,00 16,00 18,20 27,60 38,60 47,80 72,20 1998 19,90 22,00 44,00 54,00 65,40 70,60 1999 1 19,40 22,00 44,00 54,00 65,40 70,60 1999 1 19,40 22,00 44,00 54,00 65,40 70,60 1999 1 19,40	1989				43,00			67,80	67,80	67,80	76,40	89,60	
1992 18,20 22,00 32,20 37,40 43,80 87,60 87,60 96,60 1994 13,80 18,00 24,00 26,40 39,40 66,40 102,40 106,00 1995 7,20 14,60 20,00 24,80 44,00 56,80 57,20 80,60 1996 15,00 17,00 32,00 43,00 63,00 95,60 96,00 96,00 1997 16,00 16,00 16,00 16,00 18,20 27,60 38,60 47,80 72,20 1998 19,40 22,00 44,00 54,00 65,40 70,60 1999 1990 19,40 22,00 44,00 54,00 65,40 70,60 1996 13,16 17,58 18,40 25,34 19,13 32,40 37,06 60,97 75,68 90,84 107,0 scarto 3,86 2,39 8,83 10,91 8,73 21,30 16,49 38,24 42,97 49,71 48,62 moda 15,00 16,00 #N/D 40,00 #N/D #N/D 20,00 44,00 #N/D 74,00 #N/D α 0,33 0,54 0,15 0,12 0,15 0,06 0,08 0,03 0,03 0,03 0,03 ε 11,42 16,50 14,43 20,43 15,20 22,81 29,64 43,76 56,35 68,47 85,13 κ' 0,607 0,261 1,099 0,959 1,031 1,676 0,999 1,569 1,369 1,303 1,025 κ'* 0,607 0,261 1,099 0,959 1,031 1,676 0,999 1,569 1,369 1,303 1,025 κ'* 0,607 0,261 1,099 0,959 1,031 1,676 0,999 1,569 1,369 1,303 1,025 κ'* 0,607 0,261 1,099 0,959 1,031 1,676 0,999 1,569 1,369 1,303 1,025 κ'* 0,607 0,261 1,099 0,959 1,031 1,676 0,999 1,569 1,369 1,303 1,025 κ'* 0,607 0,261 1,099 0,959 1,031 1,676 0,999 1,569 1,369 1,303 1,025 κ'* 0,607 0,261 1,099 0,959 1,031 1,676 0,999 1,569 1,369 1,303 1,025 κ'* 0,607 0,261 1,099 0,959 1,031 1,676 0,999 1,569 1,369 1,303 1,025 κ'* 0,607 0,261 1,099 0,959 1,031 1,676 0,999 1,569 1,369 1,303 1,025 κ'* 0,607 0,261 1,099 0,959 1,031 1,676 0,999 1,569 1,369 1,303 1,025 κ'* 0,607 0,261 1,099 0,959 1,031 1,676 0,999 1,569 1,369 1,303 1,025 κ'* 0,607 0,261 0,207 0,	1990	15,00						33,40	53,00	60,40	93,00	122,00	
1993 13,80 18,00 24,00 26,40 39,40 66,40 102,40 106,0 1995 7,20 14,60 20,00 24,80 44,00 56,80 57,20 80,60 1996 15,00 17,00 32,00 43,00 63,00 95,60 96,00 1997 16,00 16,00 16,00 18,20 27,60 38,60 47,80 72,20 1998 19,40 22,00 44,00 54,00 65,40 70,60 1999 1999 19 8 4 14 3 4 25 26 26 26 26 1991 13,16 17,58 18,40 25,34 19,13 32,40 37,06 60,97 75,68 90,84 107,0 1909 15,00 16,00 #N/D 40,00 #N/D #N/D 20,00 44,00 #N/D 74,00 #N/D 15,00 16,00 #N/D 40,00 #N/D #N/D 20,00 44,00 #N/D 74,00 #N/D 18 11,42 16,50 14,43 20,43 15,20 22,81 29,64 43,76 56,35 68,47 85,13 18 10 1,775 1,818 10 1,775 2,227 20 2,023 2,166 26,40 39,40 66,40 102,40 106,00 24,80 44,00 56,80 57,20 80,60 39,40 44,00 56,80 57,20 80,60 39,40 44,00 54,00 65,40 70,60 39,60 47,80 72,20 30,43 44,00 54,00 54,00 65,40 70,60 39,60 47,80 72,20 30,43 44,00 54,00 54,00 54,00 30,43 40,00 40,00 40,00 40,00 40,00 30,03 40,03 40,00 30,03 40,03 40,03 30,03 40,03 40,03 30,03 40,03 40,03 30,03 40,03 40,00 30,03 40,03 40,03 30,03 40,03 40,03 30,03 40,03 40,03 30,03 40,03 40,00 30,03 40,00 30,03 40,00 30,03 40,00 30,03 40,00 30,03 40,00 30,03 40,00 30,03 40,00 30,03 40,00 30,03 40,00 30,03 40,00 30,03 40,00 30,03 40,00 30,03 40													
1994 13,80 18,00 24,00 26,40 39,40 66,40 102,40 106,0 1995 7,20 14,60 20,00 24,80 44,00 56,80 57,20 80,66 1996 15,00 17,00 32,00 43,00 63,00 95,60 96,00 96,00 1997 16,00 16,00 16,00 18,20 27,60 38,60 47,80 72,20 1998 19,40 22,00 44,00 54,00 65,40 70,60 1999 19,40 22,00 44,00 54,00 65,40 70,60 1999 19,40 22,00 44,00 54,00 65,40 70,60 1999 10° 19,40 22,00 44,00 54,00 65,40 70,60 1999 1° 8 4 14 3 4 25 26 <th></th> <td>18,20</td> <td>22,00</td> <td></td> <td>32,20</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		18,20	22,00		32,20								
1995 7,20 14,60 20,00 24,80 44,00 56,80 57,20 80,60 1996 15,00 17,00 32,00 43,00 63,00 95,60 96,00 96,00 1997 16,00 16,00 16,00 18,20 27,60 38,60 47,80 72,20 1998 19,40 22,00 44,00 54,00 65,40 70,60 1999 n°dati 19 8 4 14 3 4 25 26 26 26 26 media 13,16 17,58 18,40 25,34 19,13 32,40 37,06 60,97 75,68 90,84 107,0 scarto 3,86 2,39 8,83 10,91 8,73 21,30 16,49 38,24 42,97 49,71 48,62 moda 15,00 16,00 #N/D 40,00 #N/D #N/D 43,76 56,35 68,47 85,13 k' 0,607 0,261 1,099 0,959 1,031 1,676 0,999 1,569 1,369 <													
1996 15,00 17,00 32,00 43,00 63,00 95,60 96,00 96,00 1997 16,00 16,00 16,00 18,20 27,60 38,60 47,80 72,20 1998 19,40 22,00 44,00 54,00 65,40 70,60 1999 10°dati 19 8 4 14 3 4 25 26 26 26 26 media 13,16 17,58 18,40 25,34 19,13 32,40 37,06 60,97 75,68 90,84 107,0 scarto 3,86 2,39 8,83 10,91 8,73 21,30 16,49 38,24 42,97 49,71 48,62 moda 15,00 16,00 #M/D 40,00 #M/D #M/D 20,00 44,00 #M/D 74,00 #N/D α 0,33 0,54 0,15 0,12 0,15 0,06 0,08 0,03 0,03 0,03 0,03 0,03 0,03 1,03 1,03 1,369 1,369 1,369													
1997 16,00 16,00 16,00 18,20 27,60 38,60 47,80 72,20 1998 19,40 22,00 44,00 54,00 65,40 70,60 1999 1999 19,40 22,00 44,00 54,00 65,40 70,60 1999 1999 19,40 25,34 19,13 32,40 37,06 60,97 75,68 90,84 107,0 media 13,16 17,58 18,40 25,34 19,13 32,40 37,06 60,97 75,68 90,84 107,0 scarto 3,86 2,39 8,83 10,91 8,73 21,30 16,49 38,24 42,97 49,71 48,62 moda 15,00 16,00 #N/D 40,00 #N/D #N/D 20,00 44,00 #N/D 74,00 #N/D α 0,33 0,54 0,15 0,12 0,15 0,06 0,08 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03 1,369 1,303 </th <th></th> <td></td>													
1998 19,40 22,00 44,00 54,00 65,40 70,60 1999 1998 19													
1999 n°dati 19 8 4 14 3 4 25 26 26 26 26 26 26 26 26 26 26 26 26 26		16,00	16,00										
n°dati 19 8 4 14 3 4 25 26 26 26 26 media 13,16 17,58 18,40 25,34 19,13 32,40 37,06 60,97 75,68 90,84 107,0 scarto 3,86 2,39 8,83 10,91 8,73 21,30 16,49 38,24 42,97 49,71 48,62 moda 15,00 16,00 #N/D 40,00 #N/D 20,00 44,00 #N/D 74,00 #N/D α 0,33 0,54 0,15 0,12 0,15 0,06 0,08 0,03 0,03 0,03 0,03 ε 11,42 16,50 14,43 20,43 15,20 22,81 29,64 43,76 56,35 68,47 85,13 k' 0,607 0,261 1,099 0,959 1,031 1,676 0,999 1,569 1,369 1,303 1,025 K' 0,793 1,2					19,40			22,00	44,00	54,00	65,40	70,60	
media 13,16 17,58 18,40 25,34 19,13 32,40 37,06 60,97 75,68 90,84 107,0 scarto 3,86 2,39 8,83 10,91 8,73 21,30 16,49 38,24 42,97 49,71 48,62 moda 15,00 16,00 #N/D 40,00 #N/D 20,00 44,00 #N/D 74,00 #N/D α 0,33 0,54 0,15 0,12 0,15 0,06 0,08 0,03 0,03 0,03 0,03 ε 11,42 16,50 14,43 20,43 15,20 22,81 29,64 43,76 56,35 68,47 85,13 k' 0,607 0,261 1,099 0,959 1,031 1,676 0,999 1,569 1,369 1,303 1,025 K' 0,793 1,255 40,795 35,600 33,885 26,65 K' 0,793 1,517 KT KT KT		- 12				_							
scarto 3,86 2,39 8,83 10,91 8,73 21,30 16,49 38,24 42,97 49,71 48,62 moda 15,00 16,00 #W/D 40,00 #W/D 20,00 44,00 #W/D 74,00 #W/D α 0,33 0,54 0,15 0,12 0,15 0,06 0,08 0,03 6,03 68,47 85,12 85,12 2,84 2,964 43,76 56,35 68,47 85,12 85,12 8,62 8,62 85,12 85,12 1,032 1,676 0,999 1,569 1,369 1,303 1,025 8,75 1,255 8,75													
moda 15,00 16,00 #N/D 40,00 #N/D 20,00 44,00 #N/D 74,00 #N/D α 0,33 0,54 0,15 0,12 0,15 0,06 0,08 0,03 <													
α 0,33 0,54 0,15 0,12 0,15 0,06 0,08 0,03 0									,		-,		
8 11,42 16,50 14,43 20,43 15,20 22,81 29,64 43,76 56,35 68,47 85,13 K' 0,607 0,261 1,099 0,959 1,031 1,676 0,999 1,569 1,369 1,303 1,025 K'* n. dati 11,539 2,084 4,396 13,426 3,093 6,706 24,965 40,795 35,600 33,885 26,65 K' KT KT S 1,517 1,818 10 1,775 2,227 20 2,023 2,619 30 2,166 2,845													
k' 0,607 0,261 1,099 0,959 1,031 1,676 0,999 1,569 1,369 1,303 1,025 k' *n. dati 11,539 2,084 4,396 13,426 3,093 6,706 24,965 40,795 35,600 33,885 26,65 K' 0,793 1,255 KT KT KT KT KT KT 1,255 T 1,517 1,818 10 1,775 2,227 20 2,023 2,669 30 2,166 2,845													
K' * n. dati 11,539 2,084 4,396 13,426 3,093 6,706 24,965 40,795 35,600 33,885 26,65 K' 0,793 1,255 T KT KT 5 1,517 1,818 10 1,775 2,227 20 2,023 2,619 30 2,166 2,845													
K' 0,793 1,255 T KT KT 5 1,517 1,818 10 1,775 2,227 20 2,023 2,619 30 2,166 2,845													
T KT KT 5 1,517 1,818 10 1,775 2,227 20 2,023 2,619 30 2,166 2,845		11,000	2,007	,	-, -	0,000	0,700	27,500	40,700		33,003	20,000	
5 1,517 1,818 10 1,775 2,227 20 2,023 2,619 30 2,166 2,845													
10 1,775 2,227 20 2,023 2,619 30 2,166 2,845													
20 2,023 2,619 30 2,166 2,845		 											
30 2,166 2,845		 											
50 I 5,121		-											
100 2,585 3,507				2,5	585								


Tabella 8 – Dati pluviometrici ed elaborazioni relative alla stazione di Baronissi.

durate t(min)	10	15	20	30	40	50	60	180	360	720	1440
durate t(h)	0,17	0,25	0,33	0,50	0,67	0,83	1	3	6	12	24
media m	13,16	17,58	18,40	25,34	19,13	32,40	37,06	60,97	75,68	90,84	107,01
log ₁₀ t	-0,78	-0,60	-0,48	-0,30	-0,18	-0,08	0,00	0,48	0,78	1,08	1,38
log ₁₀ m	1,12	1,24	1,26	1,40	1,28	1,51	1,57	1,79	1,88	1,96	2,03

Tabella 9 – Valori medi relativi alla stazione di Baronissi.

Legge di probabilità pluviometrica per durate minori o uguali ad 1 ora.

Legge di probabilità pluviometrica per durate maggiori di 1 ora.

Legge Monomia								
T>1 ora								
termine noto retta di regressione A=	1,55985							
pendenza retta di regressione B=	0,3306							
a =	36,29527							
n =	0,3306							
T<1 ora								
termine noto retta di regressione A=	1,55985							
pendenza retta di regressione B=	0,5137							
a =	36,29527							
n =	0,5137							

Tabella 10 – Risultati della regressione.

I risultati della regressione sono:

A = 1,55985
$$\Rightarrow$$
 a = 10 A = 36,295
B = 0,33 = n

Quindi la legge di pioggia per durate maggiori ed uguali all'ora è:

$$\mu = 36,295 t^{0,33}$$

In riferimento alle piogge di durata inferiore, analogamente al precedente, in base al numero di anni di osservazione, si opera una regressione lineare considerando il logaritmo decimale delle durate relativamente alle ascisse e il logaritmo decimale delle altezze di pioggia relativamente alle ordinate. Così facendo si ottiene una curva che può rappresentare la legge di probabilità pluviometrica per durate inferiori all'ora.

La legge di pioggia per durate inferiori all'ora, tenuto conto che deve coincidere con quella per durate maggiori o uguali all'ora per t = 1 ora, è:

$$\mu = 36.295 t^{0.65}$$

In riferimento al coefficiente di crescita K con il periodo di ritorno T, questo si calcola riferendosi al modello di Gumbel tenendo conto che il parametro centrale scelto è stato la media.

Dai dati forniti nella tabella relativa alle precipitazioni di massima intensità relative agli intervalli di 1 - 3 - 6 - 12 e 24 ore, nonché alle durate inferiori ad 1 ora, si desumono per ogni durata i seguenti valori:

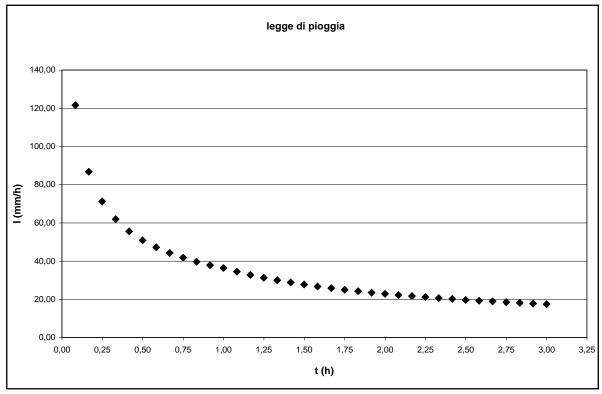
scarto quadratico medio :
$$s = \sqrt{\frac{\sum_{i=1}^{n_r} (h_{ii} - \overline{h}_i)^2}{n_r - 1}}$$

$$\alpha = \frac{\pi}{\sqrt{6 \cdot s}} \qquad \qquad \varepsilon = \mu - 0.45 \cdot s \qquad \qquad k' = \frac{1}{0.4343 \cdot \alpha \cdot \varepsilon}$$

t	0.17	0.25	0.33	0.50	0.67	0.83	1	3	6	12	24
α	0.33	0.54	0.15	0.12	0.15	0.06	0.08	0.03	0.03	0.03	0.03
3	11.42	16.50	14.43	20.43	15.20	22.81	29.64	43.76	56.35	68.47	85.13
k'	0.607	0.261	1.099	0.959	1.031	1.676	0.999	1.569	1.369	1.303	1.025

Si effettua la media pesata dei valori di k' sugli anni di osservazione ottenendo:

$$\bar{k}' = \frac{\sum_{i} n_{i} \cdot k'_{i}}{\sum_{i} n_{i}} = 1,122$$


Si calcola infine il coefficiente moltiplicativo *K*:

$$K = 1 - \bar{k}' \cdot \log \ln \frac{T}{T - 1} = 1 - 0.860 \cdot \log \ln \frac{T}{T - 1}$$

dove T è il periodo di ritorno.

Nella figura seguente si riporta la legge di pioggia sulla base dei calcoli svolti, ottenuta dalla seguente formula:

$$i = at^{n-1} \text{ [mm/h]}$$

Legge di pioggia ottenuta con la formula monomia

Nel nostro caso si assume per il proporzionamento e per la verifica un T=10 anni, per cui le curve di probabilità pluviometrica cui si farà riferimento in seguito sono:

$$\begin{split} h_{t<1h,T=10} &= 2,10 \text{ x } 36,295 \text{ t }^{0,65} \\ \Rightarrow & \boxed{\textbf{h}_{t<1h,T=10} = \textbf{76,2195 t}^{0,65}} \\ h_{t>1h,T=10} &= 2,10 \text{ x } 36,295 \text{ t }^{0,33} \\ \Rightarrow & \boxed{\textbf{h}_{t>1h,T=10} = \textbf{76,2195t}^{0,33}} \end{split}$$

Ai fini del dimensionamento delle pluviali secondo la UNI EN 12056-3, nota l'intensità di pioggia è possibile ricavare la portata di scorrimento mediante la relazione:

$$Q = \varphi \cdot i \cdot A$$

dove:

- ϕ = è il coefficiente di scorrimento (paria 1 salvo quando diversamente richiesto da regolamenti e procedure di installazione nazionali o locali), dimensionale;
- i = intensità di pioggia [1/s/m²];
- $A = \text{area della copertura } [m^2].$

La portata massima di progetto (calcolata sull'area drenata dal pluviale), di un pluviale verticale con sezione circolare non deve essere maggiore della capacità riportata in Tabella 11. Si deve considerare un grado di riempimento pari a 0,33, salvo quando regolamenti e procedure di installazione nazionali o locali prevedano l'applicazione di un coefficiente diverso (compreso tra 0,20 e 0,33).

Diametro interno del pluviale	$Q_{\mathbf{F}}$	idraulica swp 's)	Diametro interno del pluviale di	Capacità idraulica <i>Q_{RWP}</i> (l/s)		
(mm)	Grado di riempimento f= 0,20	Grado di riempimento f= 0,33	(mm)	Grado di riempimento f= 0,20	Grado di riempimento f= 0,33	
50	0,7	1,7	140	11,4	26,3	
55	0,9	2,2	150	13,7	31,6	
60	1,2	2,7	160	16,3	37,5	
65	1,5	3,4	170	19,1	44,1	
70	1,8	4,1	180	22,3	51,4	
75	2,2	5,0	190	25,7	59,3	
80	2,6	5,9	200	29,5	68,0	
85	3,0	6,9	220	38,1	87,7	
90	3,5	8,1	240	48,0	110,6	
95	4,0	9,3	260	59,4	137,0	
100	4,6	10,7	280	72,4	166,9	
110	6,0	13,8	300	87,1	200,6	
120	7,6	17,4	>300	Utilizzare	Utilizzare	
130	9,4	21,6		l'equazione di	l'equazione di	
				Wyly-Eaton	Wyly-Eaton	

 $Q_{\text{RMP}} = 2.5 \cdot 10^{-4} \cdot k_{b}^{-0.167} \cdot d_{1}^{2.967} \cdot f^{1.667}$

dove:

è la capacità del pluviale, in litri al secondo (l/s); Q_{RWP}

è la scabrezza del pluviale, in millimetri (considerata 0,25 mm);

è il diametro interno del pluviale, in millimetri (mm);

è il grado di riempimento, definito come proporzione della sezione trasversale riempita d'acqua, adimensionale.

Tabella 11 – Capacità di pluviali verticali – UNI EN 12056-3.

Nella successiva tabella si riassumono i calcoli del dimensionamento delle pluviali.

Calcolo intensità	alcolo intensità a		Kt	t [h]	t [min]	μh	i [mm/h]	i [1/s/m2]
di pioggia	36,2953	0,6546	2,1	0,083	5	14,98	179,81	0,050
Pluviali verti	icali	A [mq]	Q [1/s]	n. pluviali	Q pluv.	Tubazione DN		
Copertura	376	18,8	2	9,4	110			

Tabella 12 – Dimensionamento pluviali

Per cui le 2 pluviali Ø160 mm previste a progetto risultano ampiamente verificate.

4. RELAZIONE SUI CRITERI AMBIENTALI MINIMI

4.1 PREMESSA

Conformemente a quanto prevede l'art.34 del D. Lgs.vo n.50/2016 "Codice degli Appalti" e ss.mm.ii., il presente documento riporta i Criteri Ambientali Minimi introdotti con il Decreto 15 febbraio 2017 e sostituiti da quelli di cui al Decreto 11 ottobre 2017 ora vigente, che sono stati applicati al progetto definitivo riguardante la realizzazione di un nuovo edificio nel Campus Universitario di Fisciano denominato "Edificio C3".

Tali criteri possono essere così sostanzialmente categorizzati:

- specifiche tecniche per l'edificio (ivi comprese le prestazioni energetiche ed il comfort acustico) (paragrafo non interessato dal presente progetto;
- specifiche tecniche dei componenti edilizi edili (suddivise in criteri comuni e criteri specifiche per i componenti edilizi);
 - specifiche tecniche del cantiere;
 - specifiche tecniche premianti (tra cui la distanza di approvvigionamento);
 - condizioni di esecuzione (tra cui il rispetto del progetto e la clausola sociale).

Ogni criterio è puntualmente riproposto con annessa verifica dei requisiti previsti dalla vigente normativa specificatamente per la fase progettuale, con l'indicazione degli accorgimenti adottati in sede di progetto.

Per ciascun criterio sono inoltre indicati gli accorgimenti, gli obblighi e le azioni che dovranno essere messe in atto dall'impresa esecutrice prima dell'esecuzione dei lavori, durante l'esecuzione di ogni singola opera ed al termine dei lavori.

Tutti gli adempimenti a carico dell'impresa affidataria sono ricompresi nell'importo dell'appalto e dovranno essere eseguiti rigorosamente al fine di giungere al collaudo dell'opera nel suo complesso.

4.2 CRITERI AMBIENTALI MINIMI PER LA NUOVA COSTRUZIONE, RISTRUTTURAZIONE E MANUTENZIONE DI EDIFICI SINGOLI O IN GRUPPI

Oggetto dell'appalto è la realizzazione di un nuovo edificio nel Campus Universitario di Fisciano denominato "Edificio C3" mediante l'uso di materiali e tecniche a ridotto impatto ambientale durante il ciclo di vita dell'opera.

4.2.1 SPECIFICHE TECNICHE PER GRUPPI DI EDIFICI

4.2.1.1 Sistemazione aree a verde

Per la sistemazione delle aree verdi devono essere considerate le azioni che facilitano la successiva gestione e manutenzione, affinché possano perdurare gli effetti positivi conseguenti all'adozione dei criteri ambientali adottati in sede progettuale. Deve essere previsto che durante la manutenzione delle opere siano adottate tecniche di manutenzione del patrimonio verde esistente con interventi di controllo (es. sfalcio) precedenti al periodo di fioritura al fine di evitare la diffusione del polline. Nella scelta delle piante devono essere seguite le seguenti indicazioni:

· utilizzare specie autoctone con pollini dal basso potere allergenico;

- · nel caso di specie con polline allergenico da moderato a elevato, favorire le piante femminili o sterili;
- · favorire le piante ad impollinazione entomofila, ovvero che producono piccole quantita' di polline la cui dispersione è affidata agli insetti;
- · evitare specie urticanti o spinose (es. Gleditsia triacanthos L. Spino di Giuda, Robinia pseudoacacia L.- Falsa acacia, Pyracantha Piracanto, Elaeagnus angustifolia L. Olivagno) o tossiche (es. Nerium oleander L.- Oleandro, Taxus baccata L.- Tasso, Laburnum anagyroides Meddik- Maggiociondolo);
- · utilizzare specie erbacee con apparato radicale profondo nei casi di stabilizzazione di aree verdi con elevata pendenza e soggette a smottamenti superficiali;
- · non utilizzare specie arboree note per la fragilità dell'apparato radicale, del fusto o delle fronde che potrebbero causare danni in caso di eventi meteorici intensi.

Il requisito è rispettato perché per le aiuole e le aree a verde di progetto viene prevista una sistemazione a verde con prati e piantumazioni di essenze autoctone del tipo già esistenti prima dell'intervento.

4.2.1.2 Riduzione dell'impatto sul sistema idrografico superficiale e sotterraneo

Il progetto di nuovi edifici, ferme restando le norme e i regolamenti più restrittivi (es. piani di assetto di parchi e riserve, piani paesistici, piani territoriali provinciali, regolamenti urbanistici e edilizi comunali, etc.), deve garantire le seguenti prestazioni e prevedere gli interventi idonei per conseguirle:

- · conservazione e/o ripristino della naturalità degli ecosistemi fluviali per tutta la fascia ripariale esistente anche se non iscritti negli elenchi delle acque pubbliche provinciali;
- · mantenimento di condizioni di naturalità degli alvei e della loro fascia ripariale escludendo qualsiasi intervento di immissioni di reflui non depurati;
- · manutenzione (ordinaria e straordinaria) consistente in interventi di rimozione di rifiuti e di materiale legnoso depositatosi nell'alveo e lungo i fossi. I lavori di ripulitura e manutenzione devono essere attuati senza arrecare danno alla vegetazione ed alla eventuale fauna. I rifiuti rimossi dovranno essere separati, trasportati ai centri per la raccolta differenziata (isole ecologiche) e depositati negli appositi contenitori, oppure inviati direttamente al centro di recupero più vicino. Qualora il materiale legnoso non possa essere reimpiegato in loco, esso verrà trasportato all'impianto di compostaggio piu' vicino;
- · previsione e realizzazione di impianti di depurazione delle acque di prima pioggia3 da superfici scolanti soggette a inquinamento, ad esempio aree dove vengono svolte operazioni di carico, scarico o deposito di rifiuti pericolosi. In questo caso le superfici dovranno essere impermeabilizzate al fine di impedire lo scolamento delle acque di prima pioggia sul suolo;
- · interventi atti a garantire un corretto deflusso delle acque superficiali dalle superfici impermeabilizzate anche in occasione di eventi meteorologici eccezionali e, nel caso in cui le acque dilavate siano potenzialmente inquinate, devono essere adottati sistemi di depurazione, anche di tipo naturale;
- · previsione e realizzazione di interventi in grado di prevenire e/o impedire fenomeni di erosione, compattazione, smottamento o alluvione ed in particolare: quelli necessari a garantire un corretto deflusso delle acque superficiali sulle aree verdi come le canalette di scolo, interventi da realizzarsi secondo le tecniche dell'ingegneria naturalistica ed impiegando materiali naturali (canalette in terra, canalette in legname e pietrame, etc.); le

acque raccolte in questo sistema di canalizzazioni deve essere convogliato al più vicino corso d'acqua o impluvio naturale. Qualora si rendessero necessari interventi di messa in sicurezza idraulica, di stabilizzazione dei versanti o altri interventi finalizzati al consolidamento di sponde e versanti lungo i fossi, sono ammessi esclusivamente interventi di ingegneria naturalistica secondo la manualistica adottata dalla Regione;

· per quanto riguarda le acque sotterranee, il progetto deve prevedere azioni in grado di prevenire sversamenti di inquinanti sul suolo e nel sottosuolo. La tutela è realizzata attraverso azioni di controllo degli sversamenti sul suolo e attraverso la captazione a livello di rete di smaltimento delle eventuali acque inquinate e attraverso la loro depurazione. La progettazione deve garantire la prevenzione di sversamenti anche accidentali di inquinanti sul suolo e nelle acque sotterranee.

Verifica: per dimostrare la conformità al presente criterio, il progettista deve presentare una relazione tecnica, con relativi elaborati grafici, nella quale sia evidenziato lo stato ante operam, gli interventi previsti, i conseguenti risultati raggiungibili e lo stato post operam. Qualora il progetto sia sottoposto ad una fase di verifica valida per la successiva certificazione dell'edificio secondo uno dei protocolli di sostenibilità energetico-ambientale degli edifici (rating systems) di livello nazionale o internazionale, la conformità al presente criterio può essere dimostrata se nella certificazione risultano soddisfatti tutti i requisiti riferibili alle prestazioni ambientali richiamate dal presente criterio. In tali casi il progettista è esonerato dalla presentazione della documentazione sopra indicata, ma è richiesta la presentazione degli elaborati e/o dei documenti previsti dallo specifico protocollo di certificazione di edilizia sostenibile perseguita.

L'intervento non riguarda il sistema idrografico superficiale (alvei, fiumi, etc.).

Non sono previste aree con superfici scolanti soggette ad inquinamento.

I volumi d'acqua meteorica relativi all'area d'intervento sono trascurabili rispetto a quelli dell'intero Campus. Esse, opportunamente captate e regimentate, confluiranno nell'esistente rete acque meteoriche del Campus, che nel tratto in questione prevede il transito attraverso una vasca di laminazione che modula l'afflusso d'acqua nel Vallone Vallecara.

4.2.1.3 Raccolta, depurazione e riuso delle acque meteoriche

Deve essere prevista la realizzazione di una rete separata per la raccolta delle acque meteoriche. Le acque provenienti da superfici scolanti non soggette a inquinamento (marciapiedi, aree e strade pedonali o ciclabili, giardini, etc.) devono essere convogliate direttamente nella rete delle acque meteoriche e poi in vasche di raccolta per essere riutilizzate a scopo irriguo o per alimentare le cassette di accumulo dei servizi igienici. Le acque provenienti da superfici scolanti soggette a inquinamento (strade carrabili, parcheggi) devono essere preventivamente convogliate in sistemi di depurazione e disoleazione, anche di tipo naturale, prima di essere immesse nella rete delle acque meteoriche. Il progetto deve essere redatto sulla base della normativa di settore UNI/TS 11445 «Impianti per la raccolta e utilizzo dell'acqua piovana per usi diversi dal consumo umano - Progettazione, installazione e manutenzione» e la norma UNI EN 805 «Approvvigionamento di acqua – Requisiti per sistemi e componenti all'esterno di edifici» o norme equivalenti.

Non è previsto un nuovo sistema di raccolta, depurazione e riuso delle acque meteoriche.

I volumi d'acqua meteorica relativi all'area d'intervento sono trascurabili rispetto a quelli dell'intero Campus. Esse, opportunamente captate e regimentate, confluiranno nell'esistente rete acque meteoriche del Campus, che nel tratto in questione prevede il transito attraverso una vasca di laminazione che modula l'afflusso d'acqua nel Vallone Vallecara.

4.2.1.4 Rete di irrigazione delle aree a verde pubblico

Per l'irrigazione del verde pubblico deve essere previsto un impianto di irrigazione automatico a goccia (con acqua proveniente dalle vasche di raccolta delle acque meteoriche), alimentato da fonti energetiche rinnovabili. Il progetto deve essere redatto sulla base della normativa di settore UNI/TS 11445 «Impianti per la raccolta e utilizzo dell'acqua piovana per usi diversi dal consumo umano - Progettazione, installazione e manutenzione» o norma equivalente.

Il progetto rispetta tal criterio in quanto per l'irrigazione delle are a verde di progetto si prevede la realizzazione di impianti realizzati secondo le norme di progettazione vigenti, alimentati dalla rete acque non potabili del Campus Universitario.

4.2.2 SPECIFICHE TECNICHE DELL'EDIFICIO

4.2.2.1 Risparmio idrico

I progetti degli interventi di nuova costruzione, inclusi gli interventi di demolizione e ricostruzione e degli interventi di ristrutturazione importante di primo livello, ferme restando le norme e i regolamenti più restrittivi (es. regolamenti urbanistici ed edilizi comunali, etc.), deve prevedere:

- · la raccolta delle acque piovane per uso irriguo e/o per gli scarichi sanitari, attuata con impianti realizzati secondo la norma UNI/TS 11445 «Impianti per la raccolta e utilizzo dell'acqua piovana per usi diversi dal consumo umano Progettazione, installazione e manutenzione» e la norma UNI EN 805 «Approvvigionamento di acqua Requisiti per sistemi e componenti all'esterno di edifici» o norme equivalenti. Nel caso di manutenzione/ristrutturazione di edifici tale criterio è applicato laddove sia tecnicamente possibile;
- · l'impiego di sistemi di riduzione di flusso, di controllo di portata, di controllo della temperatura dell'acqua;
- · l'impiego di apparecchi sanitari con cassette a doppio scarico aventi scarico completo di massimo 6 litri e scarico ridotto di massimo 3 litri. Gli orinatoi senz'acqua devono utilizzare un liquido biodegradabile o funzionare completamente senza liquidi;

Per gli edifici non residenziali deve essere inoltre previsto un sistema di monitoraggio dei consumi idrici.

Verifica: per dimostrare la conformità al presente criterio, il progettista deve presentare una relazione tecnica, con relativi elaborati grafici, nella quale sia evidenziato lo stato ante operam, gli interventi previsti, i conseguenti risultati raggiungibili e lo stato post operam. Qualora il progetto sia sottoposto ad una fase di verifica valida per la successiva certificazione dell'edificio secondo uno dei protocolli di sostenibilità energetico-ambientale degli edifici (rating systems) di livello nazionale o internazionale, la conformità al presente criterio può essere dimostrata se nella certificazione risultano soddisfatti tutti i requisiti riferibili alle prestazioni ambientali richiamate dal presente criterio. In tali casi il progettista è esonerato dalla presentazione della documentazione sopra indicata, ma è richiesta la presentazione degli elaborati e/o dei documenti previsti dallo specifico protocollo di certificazione di edilizia sostenibile perseguita.

La progettazione in questione non ha previsto uno specifico impianto di raccolta e riuso delle acque meteoriche, in quanto l'intero campus ha uno specifico impianto idrico da acqua da pozzo (non potabile) per uso irriguo. Tra l'altro l'Ateneo ha in atto la progettazione di un impianto centralizzato per la raccolta e il riuso delle acque meteoriche della zona sud del Campus di Fisciano.

L'edificio C3 avrà orinatoi e wc con cassetta a doppio scarico alimentate dalla rete acqua non potabile è acqua calda limitata solo ai lavabi dei servizi per diversamente abili.

4.2.3 SPECIFICHE TECNICHE DEI COMPONENTI EDILIZI

Allo scopo di ridurre l'impatto ambientale sulle risorse naturali, di aumentare l'uso di materiali riciclati aumentando così il recupero dei rifiuti, con particolare riguardo ai rifiuti da demolizione e costruzione fermo restando il rispetto di tutte le norme vigenti e di quanto previsto dalle specifiche norme tecniche di prodotto, il progetto di un edificio (nel caso di ristrutturazioni si intende l'applicazione ai nuovi materiali che vengono usati per l'intervento o che vanno a sostituire materiali già esistenti nella costruzione) deve prevedere i seguenti criteri.

Il progettista deve compiere scelte tecniche di progetto, specificare le informazioni ambientali dei prodotti scelti e fornire la documentazione tecnica che consenta di soddisfare tali criteri e deve inoltre prescrivere che in fase di approvvigionamento l'appaltatore dovrà accertarsi della rispondenza a tali criteri comuni tramite la documentazione indicata nella verifica di ogni criterio. Tale documentazione dovrà essere presentata alla stazione appaltante in fase di esecuzione dei lavori, nelle modalità indicate nel capitolato. Ove nei singoli criteri si citano materie provenienti da riciclo, recupero, o sottoprodotti o terre e rocce da scavo si fa riferimento alle definizioni previste dal decreto legislativo 3 aprile 2006, n. 152, Norme in materia ambientale.

Il requisito risulta verificato in quanto le scelte tecniche di progetto sono state effettuate allo scopo di ridurre l'impatto ambientale dell'edificio. La documentazione progettuale comprende le informazioni ambientali dei prodotti scelti e la documentazione tecnica che consente di soddisfare tali criteri.

La Ditta Affidataria dovrà utilizzare materiali (marchiati CE e conformi al Regolamento UE 305/2011) che contengano materiali provenienti da prodotti riciclati. Le schede tecniche dovranno indicare la % di materiale riciclato impiegato in ogni singolo prodotto che la Ditta Affidataria intende impiegare.

4.2.3.1 Criteri comuni a tutti i componenti edilizi

4.2.3.1.1 Disassemblabilità

Almeno il 50% peso/peso dei componenti edilizi e degli elementi prefabbricati, escludendo gli impianti, deve essere sottoponibile, a fine vita, a demolizione selettiva ed essere riciclabile o riutilizzabile. Di tale percentuale, almeno il 15% deve essere costituito da materiali non strutturali;

Verifica: il progettista dovrà fornire l'elenco di tutti i componenti edilizi e dei materiali che possono essere riciclati o riutilizzati, con l'indicazione del relativo peso rispetto al peso totale dei materiali utilizzati per l'edificio.

Il requisito risulta verificato secondo i parametri prescritti dei materiali che possono essere riciclati o riutilizzati.

L'indicazione del relativo peso rispetto al peso totale dei materiali utilizzati per l'edificio risulta superflua in quanto per il tipo di intervento tutti i componenti delle lavorazioni risultano disassemblabili.

La Ditta Affidataria dovrà utilizzare materiali (marchiati CE e conformi al Regolamento UE 305/2011) che a fine vita possano essere soggetti a demolizione selettiva ed essere riciclabile o riutilizzabile. Le schede tecniche dovranno indicare la % di materiale riciclabile a fine vita.

4.2.3.2 Calcestruzzi confezionati in cantiere e preconfezionati

I calcestruzzi usati per il progetto devono essere prodotti con un contenuto di materiale riciclato (sul secco) di almeno il 5% sul peso del prodotto (inteso come somma delle singole componenti). Al fine del calcolo della massa di materiale riciclato va considerata la quantità che rimane effettivamente nel prodotto finale.

Verifica: il progettista deve specificare le informazioni sul profilo ambientale dei prodotti scelti e deve prescrivere che in fase di approvvigionamento l'appaltatore dovrà accertarsi della rispondenza al criterio. La percentuale di materia riciclata deve essere dimostrata tramite una delle seguenti opzioni:

- · una dichiarazione ambientale di Prodotto di Tipo III (EPD), conforme alla norma UNI EN 15804 e alla norma ISO 14025, come EPDItaly© o equivalenti;
- · una certificazione di prodotto rilasciata da un organismo di valutazione della conformità che attesti il contenuto di riciclato attraverso l'esplicitazione del bilancio di massa, come ReMade in Italy o equivalenti;
- · una certificazione di prodotto rilasciata da un organismo di valutazione della conformità che attesti il contenuto di riciclato attraverso l'esplicitazione del bilancio di massa che consiste nella verifica di una dichiarazione ambientale auto dichiarata, conforme alla norma ISO 14021.

Qualora l'azienda produttrice non fosse in possesso delle certificazioni richiamate ai punti precedenti, è ammesso presentare un rapporto di ispezione rilasciato da un organismo di ispezione, in conformità alla ISO/IEC 17020:2012, che attesti il contenuto di materia recuperata o riciclata nel prodotto. In questo caso è necessario procedere ad un'attività ispettiva durante l'esecuzione delle opere. Tale documentazione dovrà essere presentata alla stazione appaltante in fase di esecuzione dei lavori, nelle modalità indicate nel relativo capitolato.

La progettazione definitiva eseguita ha previsto l'impiego di calcestruzzi reperibili sul mercato (marchiati CE e conformi al Regolamento UE 305/2011) che a fine vita possano essere soggetti a demolizione selettiva ed essere riciclabile o riutilizzabile. Le schede tecniche dovranno indicare la % di materiale riciclabile a fine vita. Tale indicazione progettuale verrà trasferita alla fase della progettazione esecutiva.

In fase realizzativa la Ditta Affidataria dovrà attenersi alle specifiche di legge per la fornitura di tutti i materiali e componenti che dovranno rispondere alle norme vigenti. Per

ogni tipologia di materiale l'appaltatore deve presentare documentazione idonea ad attestare la corrispondenza al disposto del decreto.

4.2.3.3 Elementi prefabbricati in calcestruzzo

Gli elementi prefabbricati in calcestruzzo utilizzati nell'opera devono avere un contenuto totale di almeno il 5% in peso di materie riciclate, e/o recuperate, e/o di sottoprodotti.

Verifica: il progettista deve specificare le informazioni sul profilo ambientale dei prodotti scelti e deve prescrivere che in fase di approvvigionamento l'appaltatore dovrà accertarsi della rispondenza al criterio. La percentuale di materia riciclata deve essere dimostrata tramite una delle seguenti opzioni:

- · una dichiarazione ambientale di Prodotto di Tipo III (EPD), conforme alla norma UNI EN 15804 e alla norma ISO 14025, come EPDItaly© o equivalenti;
- · una certificazione di prodotto rilasciata da un organismo di valutazione della conformità che attesti il contenuto di riciclato attraverso l'esplicitazione del bilancio di massa, come ReMade in Italy® o equivalenti;
- una certificazione di prodotto rilasciata da un organismo di valutazione della conformità che attesti il contenuto di riciclato attraverso l'esplicitazione del bilancio di massa che consiste nella verifica di una dichiarazione ambientale auto dichiarata, conforme alla norma ISO 14021.

Qualora l'azienda produttrice non fosse in possesso delle certificazioni richiamate ai punti precedenti, è ammesso presentare un rapporto di ispezione rilasciato da un organismo di ispezione, in conformità alla ISO/IEC 17020:2012, che attesti il contenuto di materia recuperata o riciclata nel prodotto. In questo caso è necessario procedere ad un'attività ispettiva durante l'esecuzione delle opere. Tale documentazione dovrà essere presentata alla stazione appaltante in fase di esecuzione dei lavori, nelle modalità indicate nel relativo capitolato.

La progettazione definitiva eseguita ha previsto l'impiego di prefabbricati in calcestruzzo aventi percentuali di materia recuperata o riciclata in grado di soddisfare il presente criterio. Tale indicazione progettuale verrà trasferita alla fase della progettazione esecutiva.

4.2.3.4 Impianti idrico sanitari

I progetti degli interventi di nuova costruzione, inclusi gli interventi di demolizione e ricostruzione e gli interventi di ristrutturazione importante di primo livello30, ferme restando le norme e i regolamenti più restrittivi (es. regolamenti urbanistici e edilizi comunali, etc.), devono prevedere l'utilizzo di sistemi individuali di contabilizzazione del consumo di acqua per ogni unità immobiliare.

Verifica: il progettista deve presentare una relazione tecnica che dimostri il soddisfacimento del criterio e deve prescrivere che in fase di approvvigionamento l'appaltatore dovrà accertarsi della rispondenza al criterio utilizzando prodotti recanti alternativamente:

· la documentazione comprovante il rispetto del presente criterio dovrà essere presentata alla stazione appaltante in fase di esecuzione dei lavori, nelle modalità indicate nel relativo capitolato.

o, in linea con le procedure di consumi idrici.

5. RELAZONE TECNICA E DI CALCOLO DELL'IMPIANTO IDRICO ANTINCENDIO

La presente relazione riassume le ipotesi ed il calcolo dell'impianto antincendio ed in particolare dei sistemi attivi di protezione mediante impianti antincendio ad acqua (reti idranti) al servizio del "FABBRICATO C3" da realizzarsi nel Campus di Fisciano dell'Università degli Studi di Salerno.

Il presente progetto prevede la realizzazione di un fabbricato destinato alla didattica ed alla ricerca universitaria con relativi servizi, pertanto, nella progettazione dell'impianto antincendio dell'edificio si è fatto riferimento alle disposizioni del DM del 26 agosto 1992 "Norme di prevenzione incendi per l'edilizia scolastica" e smi e chiarimenti, con l'estensione alle università fatta stabilita dal decreto del 5 agosto 1998, n. 363

In particolare, sono state applicate le prescrizioni valevoli per **scuole di tipo 1** (con numero di persone contemporaneamente presenti fino a 100), in fabbricato "isolato" dotato di impianti idrici antincendio interconnessi alla rete del Campus.

1.2. Classificazione

Le scuole vengono suddivise, in relazione alle presenze effettive contemporaneamente in essere prevedibili di alunni e di personale docente e non docente, nei seguenti tipi:

- tipo 0: scuole con numero di presenze contemporanee fino a 100 persone;
- tipo 1: scuole con numero di presenze contemporanee da 101 a 300 persone;
- tipo 2: scuole con numero di presenze contemporanee da 301 a 500 persone;
- tipo 3: scuole con numero di presenze contemporanee da 501 a 800 persone;
- tipo 4: scuole con numero di presenze contemporanee da 801 a 1.200 persone;
- tipo 5: scuole con numero di presenze contemporanee oltre le 1.200 persone.

Di seguito si illustrano le caratteristiche generali dell'impianto di protezione antincendio e il calcolo delle reti secondo le indicazioni normative di seguito riportate.

5.1 RIFERIMENTI NORMATIVI

Ferme restando le prescrizioni fornite dal D.M. 26.08.1992: "Norme di prevenzione incendi per l'edilizia scolastica" e smi, agli impianti idrici antincendio si applicano le seguenti norme tecniche.

- Norma UNI 10779 "Impianti di estinzione incendi: Reti di idranti"
- Norma UNI 11292 "Locali destinati ad ospitare gruppi di pressione per impianti antincendio"
- Nrma UNI 12845 "Installazioni fisse antincendio Sistemi automatici a sprinkler Progettazione, installazione e manutenzione"
- Circolare del Ministero dell'Interno n° 24 MI.SA. del 26/1/1993. Impianti di protezione attiva antincendio.
- D.M. 30/11/1983 Termini, definizioni generali e simboli grafici di prevenzione incendi.
- D.M. n. 37 del 28/01/2008 Norme per la sicurezza degli impianti
- D.M. 07/08/2017 Approvazione di norme tecniche di prevenzione incendi per le attività scolastiche

Oltre alle specifiche norme UNI riportate nel disciplinare tecnico.

5.2 DESCRIZIONE DELL'IMPIANTO

La rete idranti oggetto di progetto dovrà servire un edificio destinato alla didattica ed alla ricerca in ambito universitario che si sviluppa su quattro livelli fuori terra di pari superficie e medesima destinazione d'uso generale.

In base alle prescrizioni di cui al Decreto e delle norme UNI prima citate, sono stati previsti:

- Una tubazione di collegamento tra l'edificio in progetto e la rete idrica antincendio del Campus, costituito da un sistema interconnesso di vasche di accumulo ed impianti di pressione antincendio in grado di fornire la portata e la pressione richiesta. In particolare il nuovo impianto andrà a connettersi con la rete esistente posta nel cunicolo tecnologico a valle della Mensa La tubazione in questione viene prevista in acciaio, posta in opera tramite giunzione flangiata con la tubazione esistente in cunicolo.
- *Una rete di distribuzione interna* costituita da un circuito di tubazioni in acciaio che dal collettore di adduzione si distribuiscono ai vari piani all'interno di un cavedio impianti. All'interno di ogni piano le tubazioni di alimentazioni agli idranti sono sempre in acciaio e saranno collocate in controsoffitto.
- N.3 idranti UNI 45 con manichette da 20 mt, distribuiti nel numero di 01 ad ogni piano;
- N. 01 Idrante soprassuolo tipo 2 x UNI 70 con attacco motopompa e N.01 gruppo attacco motopompa VV.F. UNI 70 a due bocche per la pressurizzazione della rete da parte delle autobotti dei Vigili del Fuoco installato all'esterno sull'asse viario in corrispondenza del fabbricato. L'alimentazione di detto idrante avverrà con una tubazione interrata in Pead terminale del circuito principale a servizio del fabbricato.

L'intero impianto è sezionabile per la presenza di:

- Una valvola all'attacco del collettore alle tubazioni esistenti (cunicolo tecnologico a valle della Mensa);
- Valvole al piede della montante nel fabbricato, e valvole sulle diramazioni di alimentazione degli idranti soprassuolo;

Gli idranti sono collegati alle montanti con tubazioni ϕ 1"1/2 e saranno ubicati, per ogni piano, lungo il ballatoio centrale in posizione non lontano dalle scale, sempre e comunque, in posizione facilmente accessibile e visibile, segnalati da appositi cartelli che ne consentono l'individuazione ed a distanza mutua tale da raggiungere con il getto tutte le aree da proteggere.

Ciascun idrante sarà dotato di rubinetto, tubazione flessibile certificata MISA da 20 metri, lancia e cassetta di contenimento in lamiera di acciaio verniciato a fuoco con sportello in safe-crash.

La rete di distribuzione sarà indipendente da quella dei servizi sanitari

Le tubazioni, ove necessario in base alla norma UNI EN 12241:2009, saranno coibentate contro il gelo mediante coppelle di materiale isolante in lana di vetro protetto con rivestimento finale in alluminio. Tale materiale offre il vantaggio rispetto ad altri isolanti di migliorare il comportamento al fuoco della rete alla quale conferisce una resistenza RE in caso di incendio.

Saranno utilizzati opportuni collari tagliafuoco, rispondenti alla normativa EN 1366-3, per la sigillatura degli attraversamenti su pareti o solette di qualsiasi tipologia e di tubazioni combustibili, non combustibili, con o senza isolamento, costituiti da struttura metallica con inserito internamente materiale termoespandente, completi di tasselli di fissaggio e dichiarazione di conformità per la Classe REI 120 (Rapporto di classificazione EN 13501-2).

Per i particolari tecnici si rimanda alle tavole grafiche.

5.3 IPOTESI DI PROGETTO

Con riferimento al D.M. 20/12/2012 - Regola tecnica di prevenzione incendi, l'edificio in progetto rientra tra le "Scuole di tipo 1", accreditate di un di un *livello di pericolosità 1 (basso)* per il quale:

	Tabella 1											
	RETI DI IDRANTI _[3]											
Attività	Disposizion e vigente	Classificazione secondo disposizione vigente	Livello di pericolosità secondo la norma UNI 10779	Protezione esterna SI/NO [1] [4]	Caratteristiche mi- nime dell'alimenta- zione idrica richie- sta, secondo la norma UNI 12845							
		Tipo 1/2/3	1	No	Singola							
Scuole	DM 26.8.1993	Tr		Si								
		1100 475	-	(solo per tipo 5)	amgoia auperiore							
		mer. A		**	ar I							

la Norma UNI 10779 "Impianti di estinzione incendi - Reti di idranti - Progettazione, installazione ed esercizio", prevede le seguenti condizioni di base per il dimensionamento delle reti idranti

prospetto	B.1	Dimension	amento degli impianti	mento degli impianti										
			Apparecchi considerati contemporaneamente operativi											
		Livello area di rischio	Protezione interna ^{3) 4)}	Protezione esterna ⁴⁾	Durata									
	1		2 idranti ¹⁾ con 120 l/min cadauno e pressione residua non minore di 0,2 MPa											
	L		Oppure	Generalmente non prevista	≥30 min									
	_		4 naspi ¹⁾ con 35 l/min cadauno e pressione residua non minore di 0,2 MPa											
			0,2 MPa											

Inoltre il D.M. 26.08.1992: "Norme di prevenzione incendi per l'edilizia scolastica" per scuole di tipo 1, prevede: "Le scuole di tipo 1-2-3-4-5, devono essere dotate di una rete di idranti costituita da una rete di tubazioni realizzata preferibilmente ad anello ed almeno una colonna montante in ciascun vano scala dell'edificio; da essa deve essere derivato ad ogni piano, sia fuori terra che interrato, almeno un idrante con attacco UNI 45 a disposizione per eventuale collegamento di tubazione flessibile o attacco per naspo. Al piede di ogni colonna montante per edifici con oltre 3 piani fuori terra, deve essere installato un idoneo attacco di mandata per autopompa. Per altri edifici è sufficiente un solo attacco per autopompa per tutto l'impianto. L'impianto deve essere dimensionato per garantire una portata minima di 360 l/min per ogni colonna montante e, nel caso di più colonne, il funzionamento contemporaneo di almeno 2 colonne. L'alimentazione idrica deve essere in grado di assicurare l'erogazione ai 3 idranti idraulicamente più sfavoriti, di 120 l/min cad., con una pressione residua al bocchello di 1.5 bar per un tempo di almeno 60 min. Qualora l'acquedotto non garantisca le condizioni di cui al punto precedente dovrà essere installata una idonea riserva idrica alimentata da acquedotto pubblico e/o da altre fonti. Tale riserva deve essere costantemente garantita. Le elettropompe di alimentazione della rete antincendio devono essere alimentate elettricamente da una propria linea preferenziale. L'avviamento dei gruppi di pompaggio deve essere automatico. Le tubazioni di alimentazione e quelle costituenti la rete devono essere protette dal gelo, da urti e dal fuoco. Le colonne montanti possono correre, a giorno o incassate, nei vani scale oppure in appositi alloggiamenti resistenti al fuoco REI 60".

Quindi, ferme restando le indicazioni di norma, in considerazione di quanto realizzato nel Campus in Fisciano con precedenti interventi su edifici similari a quelli in esame, si è ritenuto di progettare, per il fabbricato in questione, un impianto idrico antincendio costituito da:

- N. 1 idrante UNI 45 per ognuno dei tre piani del fabbricato corredati di tubazione flessibile da 20 m;
- N.01 gruppo attacco motopompa VV.F. UNI 70 a due bocche per la pressurizzazione della rete da parte delle autobotti dei Vigili del Fuoco e N. 01 Idrante soprassuolo tipo 2 x UNI 70 con attacco motopompa (protezione esterna), installati all'esterno in corrispondenza della strada di accesso principale al fabbricato;

L'impianto alimentato dalla rete idrica antincendio del Campus sarà in grado di garantire il funzionamento contemporaneo di tre idranti in posizione idraulicamente più sfavorita con:

- Portata di 120 l/min per ogni idrante;
- pressione residua al bocchello di 2,0 bar;
- per un tempo di almeno 60 minuti ¹

La rete antincendio del Campus è alimentata dall'acquedotto comunale, e la continuità di pressione e portata richieste dalla norma vengono garantite dalla vasca di accumulo e dalla centrale di pompaggio esistente posizionata presso la Centrale Tecnologica del Campus di Fisciano. La vasca in questione ha una capacità superiore ai

litri/minuto 120 litri al minuto x 3 idranti x 60 minuti = 21.200 litri

Il gruppo di pompaggio a servizio della rete idranti antincendio ha caratteristiche conformi alle disposizioni di norma. (UNI EN 11292, UNI EN 12845, ..).

Le tubazioni interrate dei nuovi tratti della rete antincendio sono state previste del tipo in POLIETILENE Tipo 312 PN16, mentre i tratti fuori terra interni ai fabbricati saranno realizzate con ACCIAIO tipo UNI EN 10255 (ex UNI 8863) serie media.

5.4 ULTERIORI COMPONENTI DEGLI IMPIANTI

Tutti i componenti saranno costruiti, collaudati e installati in conformità alla specifica normativa vigente, con una pressione nominale relativa sempre superiore a quella massima che il sistema può raggiungere in ogni circostanza e comunque non minore di 1.2 MPa (12 bar).

TUBAZIONI

Le tubazioni a vista nel piano interrato saranno in ACCIAIO tipo UNI EN 10255 serie media compreso i pezzi speciali (curve, gomiti, manicotti, flange ecc.) ed avranno diametro 4".

Le altre tubazioni a vista (montante, e tratti in controsoffitto e/o parete) saranno in acciaio UNI EN 10255 serie media senza saldatura compreso i pezzi speciali (curve, gomiti, manicotti, flange ecc.) ed avranno diametro compreso tra i 3" e 1"1/2.

Le tubazioni interrate saranno del tipo in PEAD PN16 Tipo 312 DN90, la posa in opera così come il collaudo sarà eseguita anche secondo le norme UNI di settore e le Raccomandazioni dell'Istituto Italiano Plastici.

Le giunzioni tra tubazioni in PEAD e tubi in acciaio saranno eseguite mediante appositi pezzi speciali, per i quali si porrà molta attenzione in fase di montaggio per gli eventuali disassamenti orizzontali e verticali che ne potrebbero compromettere la posa a regola d'arte.

Università degli Studi di Salerno – Ufficio Tecnico

punto 9.1 del citato D.M. 26.08.1992

Le tubazioni saranno installate tenendo conto dell'affidabilità che il sistema deve offrire: l'installazione di valvole di intercettazione in posizione opportuna costituiscono uno dei criteri per il raggiungimento del livello di affidabilità richiesto dal sistema.

Le tubazioni fuori terra saranno ancorate alle strutture del fabbricato a mezzo di adeguati sostegni. Le tubazioni saranno installate in modo da non risultare esposte a danneggiamenti per urti meccanici in particolare per il passaggio di automezzi. Inoltre, ove necessario, saranno coibentate contro il rischio di gelo e protette da carterino in alluminio.

Trattandosi di costruzioni in zona sismica gli attraversamenti di pareti e solai avverranno lasciando il tubo libero con contro tubo di diametro superiore almeno ad ¼ di quello della tubazione. Nel caso di attraversamenti di pareti REI il foro di passaggio della tubazione andrà protetto con sistemi (collari e/o prodotti) certificati di pari caratteristiche REI.

SOSTEGNI

Le tubazioni devono essere ancorate tramite sostegni direttamente fissati alle strutture portanti.

Il tipo il materiale ed il sistema di posa dei sostegni delle tubazioni saranno tali da assicurare la stabilità dell'impianto nelle più severe condizioni di esercizio ragionevolmente prevedibili.

In particolare:

- ogni sostegno dovrà esser in grado di assorbire un carico pari a 5 volte il peso della relativa tubazione, piena d'acqua, con l'aggiunta di un carico accidentale di 120 Kg;
- i sostegni saranno in grado di assorbire gli sforzi assiali e trasversali in fase di erogazione;
- il materiale utilizzato per qualunque componente del sostegno sarà non combustibile;
- i collari saranno chiusi attorno ai tubi;
- non saranno utilizzati sostegni aperti (come ganci a uncino o simili);
- non saranno utilizzati sostegni ancorati tramite graffe elastiche;
- non saranno utilizzati sostegni saldati direttamente alle tubazioni nè avvitati ai relativi raccordi.

VALVOLE DI INTERCETTAZIONE

Le valvole di intercettazione della rete di idranti saranno installate in posizione facilmente accessibile e segnalata.

La distribuzione delle valvole di intercettazione in un impianto sarà accuratamente studiata in modo da consentire l'esclusione di parti di impianto per manutenzione o modifica, senza dovere ogni volta mettere fuori servizio l'intero impianto.

Ogni collettore di alimentazione sarà dotato di valvola di intercettazione primaria in modo tale da potere essere sezionato singolarmente.

Le valvole di intercettazione saranno bloccate mediante apposito sigillo nella posizione di normale funzionamento, oppure sorvegliate mediante dispositivo di controllo a distanza.

Le valvole di intercettazione, qualunque esse siano, saranno di tipo indicante la posizione di apertura/chiusura e conformi alle UNI EN 1074 ove applicabile. Per tubazioni maggiori di DN 100 saranno installate valvole con azionamento a leva a 90° complete di riduttore.

TERMINALI UTILIZZATI

Idranti a muro DN 45. Gli idranti a muro saranno conformi alla UNI EN 671-2, adeguatamente protetti. Le cassette saranno complete di rubinetto DN 40, lancia a getto regolabile con ugello da 13 e tubazione flessibile da 20 m completa di relativi raccordi. Le attrezzature saranno permanentemente collegate alla valvola di intercettazione.

L'idrante, antincendio soprassuolo tipo 2 x UNI 70 conformi alla UNI 14384 è un dispositivo connesso ad una rete idrica in pressione destinato a fornire acqua durante tutte le fasi di un incendio. Gli idranti da installarsi dovranno essere del tipo ADR, ossia dotati di sistema di rottura che permette di mantenere separate la parte sopra e sottosuolo dell'idrante e di assicurare la chiusura dell'idrante anche dopo il rovesciamento della parte superiore. Tale sistema fornisce l'ulteriore vantaggio che, in caso di rottura, solo la parte superiore dell'idrante deve essere sostituita senza alcun lavoro di scavo. Gli idranti dovranno essere dotati di un dispositivo automatico che permette lo scarico dell'acqua rimasta all'interno dell'idrante una volta che questo sia stato completamente chiuso.

Questo sistema permette di preservare l'idrante dall'azione del ghiaccio o della corrosione delle superfici interne.

L'idrante è verniciato con vernici adatte a proteggerlo dalla corrosione, la parte soprassuolo è verniciata con polvere epossidica di colore Rosso RAL 3000 resistente agli agenti atmosferici ed ai raggi ultravioletti, mentre la parte sottosuolo di catramina di colore nera.

TUBAZIONI FLESSIBILI PER IDRANTI E NASPI

Le tubazioni flessibili antincendio saranno conformi alla UNI EN 14540 (DN 45) e alla UNI 9487 (DN 70).

ATTACCHI DI MANDATA PER AUTOPOMPA

L'attacco di mandata per autopompa è un'apparecchiatura antincendio, collegata alla rete di idranti, per mezzo della quale può essere immessa acqua nella rete di idranti in condizioni di emergenza.

Ogni attacco per autopompa comprenderà i seguenti elementi:

- uno o più attacchi di immissione conformi alla specifica normativa di riferimento, con diametro non inferiore a DN 70, dotati di attacchi a vite con girello UNI 804 e protetti contro l'ingresso di corpi estranei nel sistema; nel caso di due o più attacchi saranno previste valvole di sezionamento per ogni attacco;
- valvola di intercettazione, aperta, che consenta l'intervento sui componenti senza svuotare l'impianto;
- valvola di non ritorno atto ad evitare fuoriuscita d'acqua dall'impianto in pressione;
- valvola di sicurezza tarata a 12 bar, per sfogare l'eventuale sovra-pressione dell'autopompa.

Esso sarà accessibile dalle autopompe in modo agevole e sicuro, anche durante l'incendio: nel caso fosse necessario installarli sottosuolo, il pozzetto sarà apribile senza difficoltà ed il collegamento agevole; inoltre sarà protetto da urti o altri danni meccanici e dal gelo e ancorato al suolo o ai fabbricati. L'attacco sarà contrassegnato in modo da permettere l'immediata individuazione dell'impianto che alimenta e sarà segnalato mediante cartelli o iscrizioni riportanti la seguente targa:

ATTACCO DI MANDATA PER AUTOMPOMPA
Pressione massima 1.2 MPa
RETE

Per ognuno degli attacchi sarà indicata l'area servita.

5.5 CALCOLO DELL'IMPIANTO GENERALITÀ

La rete di idranti comprenderà i seguenti componenti principali:

- alimentazione idrica;
- rete di tubazioni fisse, ad anello, permanentemente in pressione, ad uso esclusivo antincendio;
- attacchi di mandata per autopompa;
- valvole di intercettazione;
- Idranti interni.
- Idranti soprassuolo

DIMENSIONAMENTO DELLE TUBAZIONI

Il calcolo idraulico della rete di tubazioni consente di dimensionare ogni tratto di tubazione in base alle perdite di carico distribuite e localizzate che si hanno in quel tratto.

Il calcolo della rete idrica antincendio è stato eseguito sulla base dei dati geometrici (lunghezze dei tratti della rete, dislivelli geodetici, diametri nominali delle tubazioni).

La procedura di calcolo impiegata ha portato alla determinazione di tutte le caratteristiche idrauliche dei tratti (portata, perdite distribuite e concentrate), della prevalenza totale, della portata totale e quindi della potenza minima della pompa da installare a monte della rete.

E' stata inoltre eseguita la verifica della velocità massima raggiunta dall'acqua in tutti i tratti della rete; in particolare è stato verificato che essa non superi in nessun tratto il valore massimo di 10.00 [m/s].

PERDITE DI CARICO DISTRIBUITE

Le perdite di tipo distribuito sono state valutate secondo la seguente formula di Hazen-Williams:

$$Hd = \cos t.*Q^{185}*L \div (D^{487}*C^{185})$$

dove:

 $cost = 6.05 * 10^7$

 $\begin{aligned} &Hd = \text{perdite distribuite} & & & & & & & \\ &Q = \text{portata nel tratto} & & & & & & \\ &L = \text{lunghezza geometrica del tratto} & & & & & \\ &D = \text{diametro della condotta} & & & & & \\ &\text{mm} & & & & & \end{aligned}$

C = coefficiente di scabrezza

PERDITE DI CARICO LOCALIZZATE

Tubo	C (Nuovo)	C (Usato)
Tubi ACCIAIO non legato UNI EN 1255 Serie Media	120	84
Tubi POLIETILENE Tipo 312 PN16	140	98

Le perdite di carico localizzate dovute:

- ai raccordi, curve, Ti e raccordi a croce, attraverso i quali la direzione del flusso subisce una variazione di 45° o maggiore);
- alle valvole di controllo e allarme (per le quali le perdite di carico da assumere sono quelle specificate dai costruttori o nei relativi certificati di prova) e a quelle di non ritorno sono state trasformate in "lunghezza di tubazione equivalente" come specificato in NFPA e nella Norma UNI 10779, ed aggiunte alla lunghezza reale della tubazione di uguale diametro e natura.

Nella determinazione delle perdite di carico localizzate si è tenuto conto che:

- quando il flusso attraversa un Ti e un raccordo a croce senza cambio di direzione, le relative perdite di carico possono essere trascurate;
- quando il flusso attraversa un Ti e un raccordo a croce in cui, senza cambio di direzione, si ha una riduzione della sezione di passaggio, è stata presa in considerazione la "lunghezza equivalente" relativa alla sezione di uscita (la minore) del raccordo medesimo;
- quando il flusso subisce un cambio di direzione (curva, Ti o raccordo a croce), è stata presa in considerazione la "lunghezza equivalente" relativa alla sezione d'uscita.

E' stato inoltre dato un limite di <u>0.40 KPa/m</u> alla perdita unitaria massima (per metro di tubo) che si desidera ottenere nelle tubazioni.

Per il calcolo viene impostata la prevalenza residua minima da assicurare al terminale di erogazione idraulicamente più sfavorito, nell'ipotesi che tutti i terminali della rete eroghino simultaneamente una portata minima che verrà meglio specificata nel paragrafo seguente. A tal proposito, non è superfluo specificare che, nel calcolo che viene di seguito riportato, sono stati considerati esclusivamente quei terminali che, secondo norma, nel loro funzionamento simultaneo dovranno garantire al bocchello sfavorito le condizioni idrauliche minime appena citate.

DATI E CALCOLO DELLA RETE

Per l'individuazione degli elementi della rete si è proceduto alla numerazione dei nodi e dei lati dei tratti. La numerazione progressiva viene eseguita, per i nodi, partendo dal nodo "1" (nodo di connessione della nuova rete a quella esistente) e così via in progressione fino a definire tutti i nodi e i tratti della rete stessa. Date le caratteristiche geometriche dell'edificio e la presenza di una unica montante, viene prevista la realizzazione di una rete "aperta".

	CALCOLO TUBAZIONE RETE DI IDRANTI												
EDIFICIO	Tratto	Q	Q	Dian	Diametro DN		\mathbf{C}	L	Perdite conc.te	J	J*L	V	Tubazione
"C3"	114110	[l/min]	[l/sec]	pollici	mm	(mm)		[m]	[m]	[mm/m]	(m)	[m/sec]	Tubazione
derivazione idrante	5-4	120	2	1 1/2"	40	41,9	120	2	0,9	76,13	0,22	1,59	acciaio
in controsoffitto	4-3	120	2	1 1/2"	40	41,9	120	8	3,4	76,13	0,87	1,59	acciaio
Montante	3-2	360	6	2 1/2"	63	68,9	120	11,2	2,5	51,56	0,71	1,93	acciaio
Tratti orizzontali in cunicolo	2-1	360	6	4"	110	105,3	120	100	7,6	6,53	0,70	0,63	acciaio
Perite di carico complessive dal gruppo all'idrante più lontano								121,2			2,50		

La massima perdita di carico riscontrata è pertanto di circa 45 mt. come da tabella seguente:

Perdita di carico manichetta	10	т с.а.
Perdita di carico per dislivello tra tubazione esistente e utenza più sfavorita	11,2	m c.a.
Pressione residua al bocchello UNI 10779	20	m c.a.
Perdita di carico tubazioni	2,50	m c.a.
Totale	44,38	т с.а.

Tale perdita di carico viene vinta dalla pressione misurata nel punto di connessione con la rete esistente (Cunicolo tecnologico – stacco Mensa).

Progetto esecutivo

R 21 – Relazione – Impianto idrici di carico e scarico, antincendio e irrigazione

6. ELENCO ELABORATI

IA 01	Rete antincendio
IA 02	Rete antincendio ai vari piani
IA 03	Impianti idrici antincendio - Schema distributivo
IS 01	Planimetria - impianti fognari
IS 02	Planimetria - impianti idrici di adduzione
IS 03	Planimetria - impianto di irrigazione
IS 04	Piante e gruppo bagni - adduzione e scarico
R 07	Disciplinare tecnico impianti idrici di carico, scarico ed antincendio
R 21	Relazione tecnica e di calcolo - Impianti idrici di carico e scarico, antincendio
	e irrigazione
R 25	Relazione sulle interferenze